1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Some properties of the generalized Van der Pol equation

9 246 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 2,71 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

General investigation Let us consider the following generalized V an der Pol equation [1]: where CO, V, q are constants, and £ is a sm all param eter.. 1.1 we first transform it into th

Trang 1

S O M E PRO PER TIES OF T H E G EN ERALIZED VAN der PO L EQ U A TIO N

NGUYEN VAN DAO (HANOI)

1 General investigation Let us consider the following generalized V an der Pol equation [1]:

where CO, V, q are constants, and £ is a sm all param eter W hen q — 0 we obtain the well-

known Van der Pol equation, for which there exists only one stable stationary oscillation

o f th e t y p e

To investigate the vibrations described by Eq (1.1) we first transform it into the standard form by means of the formulae

The transformed equations are

~ = fứ[l - (ứ cos99 + <7cosw)2]sin2 9?, (1.4)

£ ứ [l — ( ứ COS 99+ g COS V / ) 2] sin 9? COS 9?,

where ip = 99 — CO/.

By employing the averaging method of non-linear oscillations [2] we obtain in the first

approximation the following equations for a and rp:

= e a /iO , v ),

Eqs (1.5) have a zero solution a = a 4tặ =3 0 and the other non-trivial stationary solutions

a = ^ 0 detei mined by the system

The equation of variation for the zero solution is

d i a dt

Trang 2

Hence, the zero solution is stable if ( e > 0):

The equations o f variation for the non-trivial stationary solutions have the form

dòa w

(1.8)

d5y>

~dt

The characteristic equation o f this system is

X2

Therefore, the conditions o f stability for nontrivial solutions are

(1.9)

We shall consider n o w various resonant cases that correspond to the concrete values o f

2 The Resonant C ase V = 3co

In this case the averaged equations (1.5) tak e the fo im

da

(2.1)

= - e ^ < ? s i n 3 v ,

SO

/ ĩ ( í’ ,y>) = Y ' 8 ~ 4 " t' 4 y>’

(2.3)

Since

1 fl2

/ i (0,yO = ỳ - 4 9

then the zero solution a = 0 of the system (2.1) is stable if

q < Ý 2 , q > \ ' 2 ,

- | / 2 < q < ị / ĩ .

Trang 3

The non-trivial stationary solutions a+) o f the system (2.1) are determined from

the equations:

1 The first subcase

a ị - 2 q a + + 2 q 2 - 4 = 0 ,

h e n c e

As

t h e n t h e c o n d i t i o n s o f s t a b i l i t y ( 1 9 ) b e c o m e

We have

(4Ệ),

branch a+ = <7 + ^ 4 - # * is stable.

2 The second subcase

s in 3 y * = 0, cos3y>* = — 1,

hence

3v* = (2« + 1)tt, a* = - ạ ± v / 4 - ạ 2.

Consequently, when q < 0, the branch a+ = — q — Ị/ 4 — q 2 is unstable and the branch

a + — — <7+ y/4- 0 2 is stable.

is presented in Fig 1 The bold lines correspond to the stable regimes of vibrations With

the increase of the parameter q the amplitude o f vibrations changes along the lines

BCDEGHK. At the points c (q = — |' 2 ) and G (q = 2) there is a jump in the amplitude

An analogous phenomenon is also observed when decreasing the parameter q Thus, in

the case V = 3co the amplitude of stationary vibration o f the generalized system is bigger than that o f the initial system.

Trang 4

3 Vibrations in the case V = OJ

N o w , the averaged equations (1.5) are o f the fo rm

(3.1)

therefore

W e have

a dip

A (a, v) = T1

/ , (0, vO*:

I - 2 + - y + q 2 + a q c o s y - — c o s 2 ^ l ,

/ l ( 0 , v ) , = - ^ - | - 2 + g2- - y C o s 2 V, j ,

It will readily be seen that the zero solutio n a = 0 is stable if/ 1 ( 0, y>*) < 0, o r i f q < —2 and q > 2.

T he first stationary solution a *, yj* is determined by the equations

sinyj* = 0 , a ị + 2qa* + q 2- 4 = 0 ,

fr o m w hich w e obtain

= — <7±2, y>* = 2wr, where /1 is a n integer.

Since 1 - ^ - 1 = 1 1 = 0, then the co n d itio n s o f stability o f the stationary solu-

\ d y /* \ d a u

tions also take the form (2.4) We have

Trang 5

where the upper sign formula corresponds to the straight line a+ = - q + 2, while the lower

one to the straight line a+ = - q - 2 , from which it follows that for q > 0 the straight

line a+ = —q — 2 is unstable and the line a+ = —q + 2 is stable.

The s e c o n d stationary value a+, V i is determ ined as the solution o f the equations

w h ere t h e upper sign formula corresponds to t h e straight line a+ = <7 + 2 , while th e lo w e r

o n e to th e straight line a+ = q — 2.

F o l lo w in g the inequalities (2.4) w e con clu d e that the line Ơ* = q - 2 is unstable and

th e li n e = q + 2 is s t a b le w h ere q < 0.

and therefore the first condition of stability (1.9) is not satisfied and the stationary solution obtained is unstable.

The branches of the amplitude-curves that correspond to the stable stationary vibra­ tions in the case V = a> are presented in Fig 2.

siny* = 0, a \ - 2 q a + + q 2 — 4 = 0 ,

h e n c e

y* = (2n + 1)tt, a+ = q ±2.

F o r th e c a s e u n d e r c o n s id e r a tio n w e h a v e

In this case, we have

Trang 6

4 Stationary vibrations in the remaining cases (v = For these cases the averaged equations becom e quite simple

1

d a

dt

ea

T

% 0 '

dt

It is easy to sh o w that the zero solution a = 0 is stable if q2 ^ 2, and unstable if —1/2 <

< q < \ 2.

The nontrivial stationary solution

is stable for the values (ỹ2 < 2 Thus, for q2 < 2 the considered system vibrates with the

a ị —4 - 2q 2 . For q 2 > 2 the damping of vibrations takes place [1] (Fig 3).

5 Experimental Results

The influence of the parameters q and V upon the amplitudes of stationary vibrations has been investigated on the analog computer Meda 41TC The operating amplifiers work

in that regime where the tensions at the output and the input have to be changed within

Trang 7

the range o f - 1 0 to + 1 0 volt C onsequently, for th e normal work o f the computer it is necessary to transform the Eq (1.1) in to the «machinery» equations.

T o that end we introduce the notations

z = y 2 , y = X + q c o s v t ,

x - i - , i - ± , y - J L , z J L , q J L ,

-*■*> / * » z*> <7* > are the values o f X, z, q that correspond to 10 volt.

Eq (1.1) can now be rewritten in the form

- X = (’S k ^ X - e X + e k ^ X Z ,

where

k = i*- K11

Y = k 21X + k 22Q c o s v t , k 2l = , * 2 2 = — Thus, the «machinery» equations take the form

z = y 2,

K = k 2] X - \ - k 22Q ^ o s v t

.y* = 6, z* = 36, k n = 1, k 12 = 36, /c2i = 3 * * 2 2 = - y • The analog circuit used in this study is sh ow n in Fig 4 The results o f experim ents are presented in Figs 1, 2, 3 by round points.

F 4.

Trang 8

Ì J H a le , Oscillations in nonlinear systems, N ew York—London 1963.

2 N N B o g o liu b o v , Yu a M itr o p o lsk y , The asymptotic methods in the theory o f nonlinear oscillations,

Moskva 1963.

S t r e s z c z e n i e

P E W N E W L A S N O S C I U O G Ĩ L N IO N E G O R 0 W N A N IA

V A N d e r PO LA

N ieliniow e uogĩlnione ukfady zawsze posiadajạ bardzicj rốznorodne wlaắciwosci w porĩvvnaniu

z wyjsciowymi ukJadami Stw oizcnic nowych, bliskich do znanych, nieliniowych ukỉadĩvv i zbadanie ich wlasnosci ma wazne znaczenic w danym artykule zbadano drgania nieliniowych ukỉadỏvv, opisywanych uogolnionym rốwnanicm Van dtT Pola w postaci podancj przez J Halego [1J R ozpatrzono stacjonarne drgama w r6znych warunkach rezonansu i ich statecznosc.

Okazujc siẹ, ze drogạ odpow icdnicgo wyboru parametrow badanego ukladu m ozem y kierowac amplitu­

de stacjonarnych drgan od zcra do pcwncj okreslonej wartosci Teorctyczne wnioski sạ sprawdzane przez seriẹ doswiadczeri na maszynie analogowej ME D A 41TC Tcorctyczne i doốwiadczalne wyniki sạ w pdnej zgodnosci.

p e 3 10 M e

HEKOTOPLIE CBO0CTBA OBOBIUEHHOrO yPABHEHHfl BAH flep nOJIfl

He/iHHCHHbie oốoGiueHHbie cHCTCMbi Bcerfla õiiaữaỉOT ố0Jiee MHoroo6pa3HbiMH cBoftcTBa.MH no

CpaBHeHHIO c HCXOAHbLMH CHCTe.Via.V.H Co3AaHHe HOBLIX, OJIH3KHX K H3BeCTHl>IM, HeJIHHeỉÍHbIX CHCTeM

H HccJieAOBamie HX CBOHCTB HMeioT Ba>KHoe 3iiaMeHHe B AaHHoổ craTbc HCCJie/iyeTCH KOJie6aHHe HejiH-

H eiÍH bix CHCTeM, o rm c b iD a e M b ix o õ õm eH H biM ypaBHeHHeM BaH fle p r io jiH B ộ o p M C Jl>H X e f tjia [ 1 ]

P accM aT pnnaioT c* crauHOHapHbie K0.ie6aHHH B pa3JUĩMHbix ycjiOBHHX pe30HaH ca H HX ycroỉhtHBOCTb.

O i<a3biD 3C TC H 3 MTO n y T eM n o a x o A H m e r o B b i ố o p a n a p a M d p o B H C CJieA yeM oft CHCTCMbi M bi MO>KeM

ynpaBJiHTfe a.MnjiHTyAa.MH cTauHonapHbix KOJie6aiiHft OT HyjiH AO HenoToporo onpeaejieHHoro 3HaMeHHH

T eopeT H H ecK H e BbiBOAbi npoB epffioT C H cepna.M H 3 KcnepHMCHTOB H a a n a J io ro B o ii MauiHHC M E J X A - 4 1 T C TeopeTHMecKHe H 3KcnepnMeHTa/ii>Hbie pe3y;ibTaTbi HaxoAHTCH B nojiHQM corjiacH H

Received July 25, 1975.

Trang 9

C z R y m a h z a n d w N i e p o r ẹ t , M i c r o - S t r u c t u r a l e l e c t r o h y d r o d y n a m i c m o d e l o f a c o n t i n u o u s m e d i u m

M i k r o s t r u k t u r a l n y m o d e l e l e k t r o h y d r o d y n a m ic z n y o ắ r o d k a c iạ g ỉe g o

MuKpocTpyKTypHafl STieKTporHApOAHHaMHMecKaH MOflejib CIUIOIHHOỈÍ cpe/Ịbi

M S z u s t a k o w s k i , S p i n w a v e e c h o in f e r r o m a g n e t i c s u b s t a n c e s

Echo fal spinowych w ferromagnetykach

3 x o criHHOBbix BOJIH B ộeppo.MarHeTHKax

A K a w a l e c a n d B W^CKI, A monolithic convolver on transverse surface waves in a C dS crystal with a thin semiconducting wave produced b y the photo-effect

M o n o lity c z n y k o n w o l u t o r n a p o p r z e c z n y c h f a la c h p o w ie r z c h n io w y c h w k r y s z ta le C d S z c ie n k ạ

w a r s tw ạ p ố l p r z e w o đ z ^ c ạ w y tw o r z o n ạ z a p o m o c ạ f o t o e f e k t u

MoHOJiHTHbiH KOHBOJITOTOP ỉia n o n ep eq H b ix rioBepxnocTH bix BOJiHax B KpHCTajme C d s c TOH-

KHM nojiynpoBOAHLLtfiM cJioe.M o6pa3t)BaHHbiM npH noMoum ộoTooộộeKTa

J F i n a k a n d M S z u s t a k o w s k i , Application o f chain m a trix o f a four-pole lo the analysis o f thin- layer piezo-electric transducers

Z a s t o s o w a n i e m a c ie r z y la ric u e h o w e j c z w ĩ r n i k a d o a n a liz y c i c n k o w a r s tw o w y c h p r z e t w o r n ik ĩ w

p ie z o e le k tr y c z n y c h

npHMeneuHe ueno^eMHott MaTpimki qeTbipexnojiiocHHKa ỊỤIH auaJ!H3a TOHKocJioHCTbix nbe303;ieK-

Tpniieci<HX npec)6pa30BaTejieH

S K a l i s k i , On conditions o f a reflect iofiless passage o f a shock wave through a medium o f jum p-like nonhomogeneity

o warunkach bezodbiciowego przejscia fall uderzeniowej przez osrodek skokow o niejednorodny

0 6 ycnoBHHx 0e30Tpa>KaTejiLH0r0 nepexofla yAapHOH BO/IHLI qepe3 CKa^n<00Ổpa3H0 HeoztHopoA-

u y io c p e a y

T S to m p o r a n d E W l o d a r c z y k , The role o f inert m asses in the process o f fragm entation o f cylin­ drical shells b last loaded

R o l a m a s i n e r c y jn y c h w p r o c e s ie f r a g m e n ta c ji p o w lo k c y l i n d r y c z n y c h o b c iạ z a n y c h w y b u c h o w o

PoJTb H H T e p H b ix M ac c B r i p o u e c c e ộ p a m e H T a ự H H L jH JiH H flpH ^ecK H X 0Õ0Jic>HeK H a rp y > K e H H b ix

ĩinpblBOM

S K a l i s k i , Rendering the explosion compression isentropic by a “soft" layer effect

U i z e n t r o p o w i e n i e k o m p r e s ji w y b u c h o w e j z a p o m o c ạ “ m i ẹ k k i c j ” w a r s tw y z e w n ẹ tr z n e j

H 3 e H T p o n H 3 a u H a B 3 p b iB H o ro CH<aTHH n p n nOMOlUH „ M H rK o r o ” BHCLUHcro CJ 10 H

H D e r e n t o w i c z a n d z Z i o l k o w s k i , A m e t h o d f o r p r o d u c i n g i s e n t r o p i c c o m p r e s s i o n o f p l e x i g l a s s

M e t o d a u iz e n t r o p o w i e n i a p r o c e s u k o m p r e s ji p le k s ig la s u

MeTOA H33HTponH3aijHH n p o ự e cc a c>KaTHH nJieKCHTJiaca

z D z y g a d l o , I N o w o t a r s k i a n d A O l e j n i k , R e s p o n s e o f a c y l i n d r i c a l s h e l l i n s u p e r s o n i c f l o w

to a shock load

N i e s t a c j o n a r n e d r g a n i a p o v v ỉo k i c y lin d r y c z n e j, w n a d d z w i ẹ k o w y m op ỉy v v ie w y m u s z o n e o b c i^ z e n ie m

u d e r z e n io w y m

HecTaựHOHapHbie KojieốaHHH uHJiHHflpHHecKoii õonoHKH, B CBepx3ByK0B0M noTone, BbiHy>K- AeHHbie yAapnoỉi Harpy3K0ii

H W a l u k i e w i c z , Reciprocal theorem fo r discrete systems with random excitations

T w ie r d z e n ie w z a je m n e d ĩ a u k ỉad ĩ v v d y s k r e tn y c h z l o s o w y m w y m u s z e n ie m

TeopeMa o B3&HMHOCTH flJIfl AHCKpeTHbIX CHCTCM CO CJiy^aHliblMii B03AeftCTBHHMH

p M i s u k , a P a p l i n s k i a n d E W l o d a r c z y k , Cylindrical stress waves in an elastic medium generated

by a moving axisymmetrical super-seismic pressure pulse

C y lin d r y c z n e f a l e n a p r ẹ i e n i a w o ổ ro d k ư s p r ẹ z y s ty m w y w o la n e n a d s e js m ic z n y m r u c h o m y m o s io w o -

s y m e tr y c z n y m im p u J s e m c iấ n ie n ia

Iịn/uĩHApHMecKHe BoJDibi HanpíDKeHHH B ynpyroìi cpeAC, Bbi3BaHHbie CBepxceflcMHMecKHM noA-

BH>KHbIM OCeCHMM CTpH'W blM HMiryJIbCOM A aB JieH H fl

M S a d o w s k i, E S k l a d n ik - S a d o w s k a , K S u d l i t z a n d J K u r z y n a , Plasma investigations by means

o f corpuscular diagnostic techniques

Badania plazm y metodami diagnostyki korpuskularnej

HcCJieAOBaKHH nJia3Mbl MCTOAaMH KOpnyCKyJlHpHOH AHarHOCTHKH

Ngày đăng: 08/04/2015, 15:33

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w