1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Parametric oscillations of dynamical systems with cubic term at the modulation depth under the influence of nonlinear frictions

15 293 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 4,1 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

2]: the Coulom b friction, the turbulent one and their com bination.. T h e subharm onic response giv en by equations 1 .2 is obtainable only when it is physically stable... resonant cu

Trang 1

CỘNG HÒA XÃ H ộ i- CHỦ NGHĨA VIỆT NAVI

VIỆN K H O A H Ọ C VI ỆT NAM

ACTA MATHEMATICA

VIETNAMICA

T O M III

N ° 2

H À N Ộ I — 1 9 7 8

Trang 2

ACTA MATHEMATICA VIETNAMlCA

T O M 3, N ° 2 (1978)

P a r a m e tr ic oscillations of dynam ical sy stem s with cubic term at the m odu lation depth under the

influence of n o n lin ea r frictions.

N G U Y Ễ N VẰN Đ Ạ O National Institute o f Sciences S R V

T h is paper deals w ith the influence of nonlinear frictions to the para­ metric oscillations of dynam ical system s described by the equation w ith the cubic term at the m odulation depth

X + » 2X + e ( c x + i x 3)c o s V i + c c tx* + z R { x , i ) — 0, (0 1 )

w here 01, c, d, a are constants, z is a sm all p ositive param eter, R {x, x) is a non­ linear function of X , X characterized the frictions considered Three form s o f non­ linear frictions w ill be investigated h e r e t1 2]: the Coulom b friction, the turbulent one and their com bination.

A s w ill be seen later in the analysis, the sign and value o f parameter d

sharply chan ge the m otion picture and the stable regions.

It m ust be em phasized that the equation ( o l ) describes the real physical

system s m ore precisely than the one in w hich d «= o t 4' 5 61 T h e system o f type

( o l ) w ith linear friction w as studied qualitatively by M inorsk y[3] but no attem pt has y et been m ad e to investigate it w ith the Coulomb friction, turbulent one and their com bination.

§ 1 S T A T IO N A R Y O S C IL L A T IO N S A N D T H E IR S T A B IL IT Y

L et us consider the resonant case w hen there exists the fo llo w in g relation

b etw een the frequencies

*>2 = — + CA ( 1 1 )

4

Trang 3

where A is detuning A t first, w e transform the equation ( 0 1 ) into standard form

by m eans of the formulae

2

T he transform ed equations are

— à = — z [ a x + a x 3 + ( cx + i l r 3) COSVt + R ( x , i ) ] cose,

<2<i> = e [ a i -f + (c x + d x 3) cosV / + R { x , i ) ] sine,

2

Y

w h ere 4» = 8 - — t and J , 4» are slow ly v a ry in g fu n ctio n s of t.

2

T h e asym ptotic method of nonlinear oscillations giv es in the first approx­

im ation the fo llo w in g equations

Y ả = — e ^ s u , Y) + Ị - ~ - + sin2 ♦ J ,

2

Y = z \ \ a + " f" ơc3 + Y ) “ (■ ?" + ^ ĩ ) COs2*]'

(1 4 )

received by averaging the right hand sides of (1 3 ) over the tim e, w here we designate

2%

s{a, y) = I cose R (a s in e , đ co se) dữ,

o

2%

H { a t y ) = f sine R Usine, acose) ie

o

(1 5 )

T h e steady state harmonic solution corresponding to a «=e 0, ♦ = 0 are

( ~ A ~ + ~ t ) s i n 2 *• “ “ s ^ 0’

■+ ” ~ r ) cos2 * 0 = - J a 0 + Y a a l + H ( a 0’ V ).

E lim inating 4>0 gives

Trang 4

T h e subharm onic response giv en by equations (1 2 ) is obtainable only when it is physically stable W e study now the stability o f stationary oscillations

Let òa and be sm all perturbations and set a — a0 + òa, t = + Ò* Sub­

stituting these expressions into equations ( 1.4 ), neglecting pow ers o f òa, 0<t> above

the first and also m aking use of the relationships (1 6 ) yields

= + ( l " + d a °) sin2**] M + ( y + - J al ) a0cos2^ồ* ị

+ ( y + ~ al ) a 0sin2<t-0ỏ* ị.

The characteristic equation of this system is given by

[ ? ) < ' ^ 2 + ị v — G v S ) + ^ ỉ ) ( 2 ể + ^ > 4 ^ = 0 , ( 1 9 )

where the follo w in g notation is introduced & — —r , ^

Ci>*

The stability condition is given by the Routh-Hurwitz criterion that is

ia jS ) > 0 , ( Ổ + ( 2 Ổ + 9 ) f l ỉ ) — > 0 ( 1 1 0 )

In the figu res presented below the darkish areas correspond to the unstable regions

w here the conditions ( 1.1 0 ) violated and the undarkish ones — to the stable regions Som etim e the unstable branches o f resonant curves are show n dotted to indicate that they are physically unobtainable.

A s w ill be seen later the nonlinearity o f the system under consider­ ation/coefficient a /stro n g ly influences to the m axim um of am plitudes of stationary oscillations and their stability.

§ 2 T H E INFLUENCE OF COULOMB FRICTION Let us consider the Coulpmb friction of t y p e ,

w here

1 i f X > 0 ,

s i g n i = ị — 1 i f X < 0,

•0 if i 0.

5

Trang 5

In this case w e h av e

S ( « Y) - 1 *

0 fo r a = 0,

1 2 hD

and th e eq u atio n s (1 4 ) becom e

for a =£ 0 :

— à = — £ r — A + (2c + <ia2) ’Sin24>l,

X <2 = E r <2 + — a a 3 - — (c -f d a 2) cos2<l>l,

and for <2 = 0

and th e e q u a tio n w = 0 gives

e + ^ a l

(2.2)

— a<i> = — ổ | " a H — — a a 2 -— (c + d a 2) c o s 2 + l.

The exoression (1 8 ) now takes form

16 9ỔÌ 4 ( 1 — 02 + K ; ) 2

Wia" Ỵ) = aH 2 ể + w + Tẽ 7 ~ 1

c ( 2 e+S>aĩÝ

„ = x , M Ì Ì a , ọ&c = cA„,

2 » 4 O)2 x « 2 i « 2 » 2

Figs 1 — 3 are obtained by plotting equation (2 5 ) for the positive

p = + 0 1/th e resonant curves in the case o f n egative 0 are received by mirror

reflection/ F ig s 1, 2 correspond to the n ega tive Value o f d F or the fig 1 w e

have 0 > 9 > > — 2(33/ 2 7 ^ j 2 0, nam ely, c2> = — 0 .1, (3 = 0 15, and ^ ^ o / s t r a i g h t

lines 1/, I = 10—4/curve 2 /, — 6 , 2 5 10'_4/curves 3 /, *2^0 = 1 2 ,5 1 0 4/cur-ves 4/ T h e param eters for the fig 2 are ^ < — 2 ^ / 2 7 Ọ ổ o < 0 : ^ = — 0 1 ,

Ổ => 0 1 , and Ọổồ = 9 • 10 Vcurve 2/, — 2 5 1 0 Vcurve 3/.

For the positive valué o f d w e have the resonant curves in f i g 3 : ^ « = 0 1 ,

p = 0 1 , Ổ = 0 1 5 and = o/straight lines 1/, 'Pổ2 , — 10- "Vcurve 2/, =

= 3 6 1 0- 4 /curve 3/•

6

Trang 6

F ig.4 re p resen ts the re s o n a n t curves in the case d = 0 for the p a ra m e te rs

• = 0 1 , Ổ = 0 1 5 and 9 ổ 0 = o/straight lines 1/, ọ ẻ l — 6 , 2 5 1 0 4/curve 2/,

?'ẻl — 12,5 1 0 V curve 3 /, Ọ ổ l = 25 10—4/curve 4 /.

§ 3 TU RBU LENT FRICTION

t is easily to sh ow th a t in th is case

S(-a, y ) = - L h2Y2a2

Ổ X

H { a , Y ) = 0.

21 d therefore the averaging equations (1 4 ) take the form

i ‘“ ” - c [ s ĩ h’ Y'v + ( t “ + Ỉ * 3) sin24 ( 3 -2 )

X „ * = c [ A „ + ! a 0 3 _ „ + i

N ow the a m p litu d e <70 of s ta tio n a ry o scillation an d the freq u en cy y / o = — /

2“ ĩre related by the equation

There 9(S2 = t h 2 Such re la tio n sh ip fo r d < 0 a re sh o w n in fig 5 /p = 0 1 ,

3 7w

^ = — 0 1 5 , ổ = 0 1 5 / F o r ^ 2 = 0 w e h ave tw o cro ssin g s tra ig h t lin e s 1

V ith the sm all v alu es o f 9 — 10 2/ th e re so n a n t cu rv e consists o f th re e

banches 2 T h e first branch lies above straight line a 2 0 = — 2 Ổ / ^ , the second

p e — betw een a \ — — C!^i> and a2 c = — 2 ổ / <5> a n d th e th ird lo w e r s tra ig h t line

4 = — Ổ /9 ) T h e tw o last b ran ch es a re tig h te n e d a t th e po int a 2 0 = — Ổ /9 ),

c

= 1 — p W ith th e g ro w th o f 9 ^ 2 th e second b ra n c h becom es lo w e r and

lw er, but the first m oves up For sufficiently large values of ^ 2 the resonant

c r v e s consist o f tw o branches/see curves 3 for 5^ 2 = 0 - !/• One of w hich is above

t e s tra ig h t line a 2 0 — — 2 d ^ b an d th e o th e r is lo w e r a 2 0 = —

T h e re so n a n t c u rv e s fo r th e case d > 0 a re sh o w n in fig 6 I f ^ 6 \l2 C >

r > 0 the re s o n a n t cu rv e consists o f tw o « o arab o lic > b ra n c h e s/se e c u rv es 3 /

Vith th e g ro w th o f 9 S 2 these b ran ch es m ove aw ay F o r ^ > Ọ ố ị/2 C > 0 the

1

Trang 7

resonant curve has form represented by branches 2 T he param eters of the curves

in fig 6 are ^ = 0 1 5 , Ổ = 0 1 5 , p = 0 1 and 5^ 2 — o/straight lines 1/,

~ 0 • 15/curves 2/, ^ > 2 = 0 22/curves 3/

F o r co m p ariso n th e re so n a n t cu rv es in th e case d = 0 a re g iv e n in fig 7

T h e o th e r p a ra m e te rs a r e : p = 0 1 , ể = 0 1 5 an d ^ 2 “ o /s tr a ig h t lines 1/,

^ 2 “ 0 0 5 /c u rv e 2/, Ọ6-, = 0 l/c u r v e 3/, *= 0 1 5 /c u rv e 4/

§ 4 T U R B U L E N T FRICTION TO GETH ER W ITH T H E COULOMB ONE

In this section the nonlinear friction of form [2]

is in v e stig a te d , w h ere h0, h2 a re th e positive con stants.

N o w the equations (1 4 ) become

à = — t \ — + ~ Y V + a ■+ a 3) sin2

£ |~ — <2 + — cxa3 — / — a + — a A c o s 2 t l ,

and the equation (1 7 ) takes form

4 ( 2 ^ + s v * * ) 2 4 (1 - o2 + K 2)2 1 _ 0 (1

F o r d > 0 th e re so n a n t cu rv es h av e fo rm p re se n te d in fig 8 /p = 0 1 , c =

= ^ = 0 1 5 / ' S tra ig h t lines 1 co rresp o n d = 5 ^ 2 = 0 an d c u rv e s 2,3 c o rre s ­ pond to 9S p 4- 5 ^ 2 ^ 0 — 5 ^ 2 = 5 1 0 2/icurve 2 /, s= 9 S 2 = 7 , 5 1 0 2/

cu rve 3/.

If J < 0, th en d ep en d in g on th e disp osition o f th e c u rv es

y = A ( 2 9 ô c + 9 ô 2A ) 2 , z *= A ( 2 Ổ + ^ b A )2 (4 4 )

th e re s o n a n t c u rv e s h a v e fo rm s sh o w n in fig.9 T h e c u rv e 2 co rresp o n d s to th e

case w hen there exists only a point of intersection of the curves (4 4 ) 'Curve 3

and point 3 correspond to the points of intersection Aỵ, A 2, A 3 o f the curveổ ( 4 ,4 ) : Aỵ > — 2 (? /c5>, A 2 = A 3 = — ổ / ^ If the curves (4 4 ) have three sepa­

rated points o f intersection then the resonant curves have form ^ 4 * in fig 9 if

■^1 > — 2 ổ / ^ , A 2 < — d ^ b , A z < — and form c,5 >: if A 1 > — 2 ổ / t5>,

- 2 eỉ<2> > A 2 > - e / % a 3 < - e n

T h e re s o n a n t cu rv es in th e case d — 0 a re re p re s e n te d in fig 1 0 fo r

p = 0 2 5 , £ = 0 1 6 , (% o = 2 1 0 ~ 2 an d 5 ^ 2 = 0 1 6 /p o in t 2 /, 9 6 2 = • 10“ 2

*3

/c u rv e 3 /, 9 ^2,= = “ TT • 1 O’*"2/c u rv e 4/, ^ 2' “ 12 10~~2/c u rv e 5/

Trang 8

T o compare w ith the linear friction in figs 11, 12 and 13 the am plitude —

frequency responses in the system (0 1 ) w ith linear friction R { x i ) — hx are

plitted for the case d < o / f i g - l l / , d > o/fig.12/and d — o / f i g l 3 / T h e curves in

th;se figures are presented for the case p = 0 1, Ổ = 0 15 T he other parameters

fo f ig 11 are 3 = — 0 1 5 and ỌÔ = o/curve ] / ^ = 0 03/curve 2 /, = 0 21

/cirve 3/, &Ố = 0 3/curve 4/ For fig 12 we have *5) = 0 1 5 and = o/curve 1/,

Ọt = 0 2/curve 2/, ■=» 0 3/curve 3 /, ^ = 0 45/curve 4/an d for f ig 13 : d = 0,

= o/curve 1/, = 0 27/curve 2/, ^ 7 = 0 28/curve 3 /, = 0 297/curve 4/,

w ls r e 5 S — 4e/j/o>

R E F E R E N C E S

1— Osinski z Comparison of damping of Oscillations by different kinds of f r i c t ­ ions V International Conf Nonlinear Oscillations, Kiev 1969.

2— Bulgakov B w Oscillations, (in Russian)% Moscow, 1954.

3 — Minorsky N N onlinear Oscillations D Van Nostrand, 1962.

4— Kaudcrer H Nichtlinear Mechanik Berlin, 1958.

5 — Schmidt G P a r a m e te r e r r e g te Schwingungen- Berlin, 1975.

6 — N guyen Van Dao P a r a m e t r ic O scillations o f mcchariical sy ste m s w i t h r e g a r d

f o r the incomplete elasticity o f material.

Proceedings of Hanoi Polytechnical Institute 7/1 975

7 — Bogoliubov N N and Mitropolski Yu A A s y m p to tic methods in the th eory o f

nonlinear oscillations, Moscow, 1963.

Reọu le I S D écem bre 1 9 7 7

Trang 9

Fig 1

Fig 2

Trang 10

Fig■ 4

Trang 11

Fig 5

Trang 12

F ig 6

Fig 7

Trang 13

Fig 8

Fig 9

Trang 14

F«g- 10

Trang 15

F ig 12

Fig Í S

Ngày đăng: 08/04/2015, 15:30

🧩 Sản phẩm bạn có thể quan tâm