1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Nonlinear oscillations of third order systems. Part II Non-autonomous systems

10 406 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 3,25 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Two-Parameters Solution la the Resonance Case... The amplitude and phase of the stationary oscillation are determined from the rela­ tio n s: Py sin y j- ỉ cosy = yi li+ffai* By elim

Trang 1

NONLINEAR OSCILLATIONS O F T H IR D O R D ER SYSTEM S

PART II N O N -A U TO N O M O U S SYSTEM S

N G U Y E N V A N D A O (H A N O I)

Introduction

T h is c h a p t e r is d e vo ted to the stu d y o f the o s c illa t io n o f t h ir d o rd e r n o n -a u to n o m o u s system in th e re so n an ce case S e c tio n 1 d e als w it h the g e n e ra l th e o ry T h e a p p ro x im a te

s o lu tio n o f the m o tio n e q u a tio n is fo u n d b y m e a n s o f the a s y m p to tic m e th o d B y c o n ­ tra st w it h th e a u to n o m o u s case [11] the p h a se \p here h a s a g re a t in flu e n c e on the a m ­

p litu d e a n d fre q u e n cy o f o s c illa tio n In S e c t io n 2 the s t a b ilit y c o n d itio n o f the s ta tio n ­

a ry o s c illa t io n is an a ly se d It is w ritte n in a c o m p a c t a n d c o m fo rta b le fo r m fo r p ra c tic a l use A s p e c ia l but im p o rta n t case— the D u ffin g ca se is d e a lt w ith in S e c t io n 3 I t h a s been p ro v e d that f o r the th ird -o rd e r system , th e h a rd n o n lin e a r c h a ra c te ris tic d o cs n o t

e x h ib it a sta b le p e rio d ic o s c illa tio n T h is p h e n o m e n o n is n o t o b se rve d in the se c o n d -

o rd e r sy ste m T h e n e x t tw o S e c tio n s 4, 5 a re o f a m o re sp e c ia liz e d c h a ra c te r T h e y

c o n ta in th e stud ie s o f the fo rce d o s c illa tio n in th e t h ir d o r d e r se lf-e xc ite d system C e rta in

z o n e o f s y n c h ro n iz a tio n is d e term in e d I n c o m p a ris o n w it h the a n a lo g o u s p ro b le m in the s e c o n d o rd e r system , the fre q u e n c y e n tra in m e n t zo n e b e co m e s n a rro w e r

A n e x p e rim e n t o n the a n a lo g c o m p u te r h a s b een c o n d u c te d to v e r if y th e th e o re tica l

re su lts

1 Two-Parameters Solution la the Resonance Case

Let us consider the oscillations of the system governed by the differential equation

o f th e t h ir d o rd e r:

(1.1) X + Ệ X + Q 2X + Ệ Ũ 2X = e R ( x t X , 3c) + P o s i n y f ,

h e re f , Q , y, PQ are c o n stan ts a n d R ( x, X , 3c) is the n o n lin e a r fu n c t io n o f X, X , X I t is

assumed that there is a reasonance relation

Pq is a s m a ll q u a n tity o f the firs t o rd e r: p 0 = eP.

( 1 - 3 ) X = acos(yt + yj)+ y , yt) + e2u 2( a 9 y) , y / ) +

w h e re u (a, y ỉ,y t) are the p e rio c ỉĩc fu n c tio n s w it h the p e rio d 271 re la tiv e ly o f y a n d y t

a n d a, rp a re de term in e d fro m the e q u a tio n s

Trang 2

126 N guyen Van D ao

da

— = e A iia , V)) + s M j ( a , y j) +

~ = eB ia , v ) + e 2B 2(a, v ) +

B y s u b s titu tin g (1 3 ), (1 4 ) in to (1 1 ) w e get

a 3« , Ô2U, 2 õu, + 5 ĩ ^ + Ệ d ^ - +y a f + * v ui + e ■■■

= eP sin yt + £jR(acos(p, —aysin<p, - a y 2C0S(p)+ e2

here

R ị x, X , x ) = R ( x, x ) - ơ x — í ơ x

B y c o m p a rin g the coefficients o f £ in (1 5 ), w e h a v e :

(J.6) 2 y ị y a B 1 - Ệ A i ) s i ĩ \ ( p - 2 y ( y A 1+ ỉ a B l )cos<p +

+ ^ + l J £ + r ‘ í ^ + ỉ r 1u , - r s m r ,

+ R(acos<p , — y a sin tp , y 2acos(f ), 9 ? = y t + y

N o w , w e e x p a n d the fu n c tio n in the F o u r ie r se rie s:

00

( 1 7 ) /?(a c o s< p , - y a s in ọ ? , — y2a co sọ ?) = ^ (rlHcosn<p + r2llsinn<p).

T h e fu n c tio n Ui is a lso fo u n d in the s e rie s:

m

w ith an a d d it io n a l c o n d itio n : « ! do es n o t c o n t a in the te rm s w it h a v a n is h in g d e n o m in a to r

Substituting (1.7), (1.8) into (1.6) and equating the coefficients of sinẹ>, cosip, we obtain:

2 y ( y A 1 + ỉ a B 1) = P s i n i p - r ^ , 2y(yaB1 - Ệ A i ) = P c o s y + r 21.

B y c o m p a rin g the coefficients o f the o th e r h a rm o n ic s , w e h a v e :

y 2(l - m 2) ( ỉ u lm + n tyv lm) = rlm, m í 1,

( 1 10 )

H e n c e w e o b ta in

t r lm' - m y r 2l

(1.11)

y 2( l - m 2) ( £ 2 + m 2y 2)

Trang 3

E q u a t io n s (1 9 ) g ive

P ( y s in y — Ệcosrp) — y f u - Ệ r 2l

A, =

2 y ( i 2 + y 2)

( 1- 12)

i >( i s i n v ’ + y c o s y ) - f / - n + y r 2t

= — —

2 y a ( ỉ 2 + y 2 )

T h e c a lc u la t io n o f h ig h e r a p p ro x im a tio n s p re se n ts n o d iffic u ltie s

Thus, in the first approximation we have:

d a P ( y s i n ụ > - ỉ C O S r p ) — y r tl - £ r 21

(1.14)

d y _ P ( f s in y + y c o s y ) — Ệrn + y r21

T h e re fin e m e n t o f the first a p p ro x im a tio n is :

trĩ = 0

m# 1

H e re a a n d y sa tisfy E q s (1 1 4 )

The amplitude and phase of the stationary oscillation are determined from the rela­

tio n s:

P(y sin y j- ỉ cosy) = yi li+ffai*

By eliminating the phase rp one obtains:

2 Stability of Stationary Oscillation

L e t ôa, ỗrp be s m a ll p e rtu rb a tio n s an d set a = aQ + òa y = y>o + <ty w h ere a0f y) a rc the s ta tio n a ry v a lu e s o f J , y d e te rm in e d fr o m (1 1 6 ) P u ttin g th e a b o v e e xp re ssio n s in to

E q s ( 1 1 4 ) a n d m a k in g use o f th e steady-state E q s (1 1 6 ), w e o b ta in th e fo llo w in g v a r ia ­

t io n a l e q u a tio n s :

^ d T ■ W g T l - f r ' i + - r ' i X v )

( )

* - W V K K f r n - ^ O ^ + i m + f r O i v l ,

w h ere the p rim e deno tes the d e riv a tiv e w ith re sp e c t to a 0

T h e c h a ra c te ris tic e q u a tio n o f th e system ( 2 1 ) is

Trang 4

128 Nguyen Van Dao

■where

q 2ya0( Ị 2 + y 2) da0 [a°(yrLl

(2.3)

8y2a0( f2 + y 2) da0 f*r>

tv = r f t + r h - P 2.

T h e s ta b ility c o n d itio n is g iv e n b y the R o u t h - H u r v it z c rite rio n , th a t is :

(2.5)

Ạ- w > 0.

da0

A s w = 0 is the e q u atio n o f the re so n a n ce c u rv e , so the seco nd in e q u a lity (2 5 ) m e a n s

th a t the v e rtic a l tangencies o f the re so n a n c e c u r v e serve as a b o u n d a ry betw een the sta b le

a n d u n sta b le re g io ns T h e first in e q u a lit y (2 4 ) sets som e lim ita tio n s o n e ith e r the a m p li­

tu d e o f v ib ra tio n o r the p ara m ete rs o f the syste m in vestig ated

3 The Duffing Case

B y w a y o f e xam p le let us c o n s id e r the d u ffin g case

R ( x , X , x ) = —/9jc3.

N o w , th e m o tio n e q u a tio n tak e s the fo rm :

( 3 1 ) X + Ệ X + Q 2X + Ệ Í Ì 2 X + efix* = c P s in y f

I n th is case, we have

The relation (1.17) gives, in the first approximation, the following equation of the re­ sonance curve:

(3.2)

rn = Ệ ơ a

-4

r21 = ơya.

(3.3)

w h ere w e deno te

(3 4 )

T h e firs t s ta b ility c o n d itio n (2 4 ) is o f the f o r m :

- 3 y p a l > 0,

Trang 5

i.e the n e ce ssa ry c o n d it io n fo r the sta b ility o f the s ta tio n a ry o s c illa t io n is :

T h u s , fo r the D u ffin g case, o n ly the soft system has the stab le p e r io d ic o sc illa tio n s

T h e re la tio n ( 3 3 ) is p lo tte d in F ig 1 fo r f = 10, Q = 1, p* = — 1 0_1 an d p * = 1 0" 5

(c u rv e 1), p * = 1.25* 1 0" 6 (c u rv e 2 ) T h e p lo ts in b o ld face c o rre s p o n d to the sta b le state o f v ib r a t io n w h e re the s ta b ility c o n d itio n (2 5 ) is v a lid

4 Forced Oscillation of Self-Excited System

I n th is S e c tio n th e fo rc e d o s c illa tio n o f th ir d -o r d e r n o n lin e a r system , w it h th e

se lf-e x c ita tio n g o v e rn e d b y the d iffe re n tia l e q u a tio n :

(4 1 ) x + ỉ ' x + ữ 2x + ỉ í ì 2x + e ( x 2 - ỉ ) x = e P s i n y t

is co n sid e re d W h e n p = 0, the system u n d e r c o n s id e ra tio n is a se lf-e xcite d o ne

I n th is case it is e asy to v e rify th a t:

' l i = - ỉ ơ a ,

t a = ữ 2( l —V2) , V =

Equation (1.17) for determining the amplitude of the stationary oscillation is now of

the f o r m :

Trang 6

130 Nguyen Van Dao

H e n ce w e o b ta in

V2 = 1

-I-e ữ ( A - l ) ± -I-e S y - ( 4 - i y

(Ệ2 + G 2) P 2

4 & Ệ 2

A

0.5

0

0 9 0 9 5 1 0 5 V

F i g 2.

T h e r e la tio n (4 4 ) is p lo tte d in F ig 2 f o r th e c a se = Q = 1, e = 0 1 W h e n 7 = 0 , the

re sp o n se c u rv e c o n s is ts o f the p o in t A = 1, V 2 = 1 an d v2-a x is F o r s u ffic ie n tly lo w v a lu e s

o f / (see b ra n c h e s 1), th e re sp o n se c u rv e c o n s is t s o f tw o b ra n c h e s : th e firs t is a r o u n d the

p o in t V 2 = 1, A = 1 a n d the se c o n d lie s a b o v e the v2-a x is T h e b ra n c h e s 1 in F ig 2 c o r ­

re sp o n d to J = 4 /8 1 W h e n J = 4 /2 7 , th e re sp o n se c u rv e re d u ce s to a c ro s s -b ra n c h (c u rv e 2 ) F o r J > 4 /2 7 the re sp o n se c u rv e c o n s is ts o f one b r a n c h ly in g o u tsid e the c u rv e

2 (see c u rv e 3 f o r J = 8 /2 7 )

T h e s ta b ility c o n d itio n (2 4 ), (2 5 ) o f th e s ta tio n a ry s o lu tio n is

T h e in e q u a lit y (4 6 ) is satisfied o n the u p p e r b ra n ch e s o f th e re sp o n se c u rv e s lim ite d b y the v e rt ic a l tan g e n cie s I n F ig 2 the b r a n c h e s c o rre s p o n d in g to th e u n s ta b le s o lu tio n are m a rk e d b y h a tc h in g , w h e re th e in e q u a lit ie s (4 5 ), (4 6 ) a re n o t sa tisfie d

to the period of the cxciting force However, since the system considered is a self-excited

forced oscillation and the self-excited one in the zone near the resonance zone For this purpose, we represent the solution of Eq (4.1) in the form:

(4 5)

(4.6)

dA

5 The Process o f Frequency Enừaỉnm ent

Trang 7

w h ere the firs t term is the fo rced o s c illa t io n aD d th e seco n d o n e is the se lf-e xcite d o s c illa ­ tio n T h e r e are three u n k n o w n q u a n titie s a0 , y)0 , b0 T o d e te rm in e th e m , w e su b stitu te ( 5 1 ) in to (4 1 ) an d co m p a re the h a rm o n ic s

B y e q u a tin g the coefficients o f cos(>'f+Y>o)> s in ( y f + y ) a n d s in i? / , o n e o b ta in s:

Ệ ( ũ 2 - y 2)a0 - ePsintflo,

( 5 2) yịy2- Q 2)a0+ Eyị] - - y | a 0 = zPcosyo,

B y e lim in a tin g the p h ase rpo betw een the tw o fir s t e q u a tio n s o f (5 2 ) w e h ave

( 5 3 ) S P 2 = - y * ) 2 + Q * ị y 2 - Q 2 + e ị l _ ^ _ * Ị Ị ’ Ị

F ro m th e th ird e q u a tio n o f (5 2 ) there fo llo w s :

a ) T h e su bcase 1 : 6 = 0

I n th is su b ca se there is no se lf-e xc ite d o s c illa t io n an d E q (5 3 ) c o in c id e s w ith (4 3 ),

w h ic h y ie ld s the a m p litu d e a0 o f th e fo rce d o s c illa tio n

b ) T h e su bcase 2

-O b v io u s ly , the self-e xcite d o s c illa t io n tak e s p la c e o n ly in th e re g io n A < 1 /2 P u ttin g in (5 3 ) a2 = 2, b = 0, w e h a ve th e e q u a tio n f o r d e te rm in in g the c o rre s p o n d in g v a lu e s

v ? , v f

H e n c e w e o b ta in

(5 5 ) v f , 2 = l ~ 2 ( ỉ ỉ + ữ I) ± Ĩ Ĩ P ĩ P T ã * ) Ý 2(£2 + G 2) F 2 S 2 ữ 2

-I t s h o u ld b e n o te d th a t i f w e re p la c e A = 1 /2 in (4 4 ), w e o b ta in th ese v a lu e s a s w e ll

Thus, in the zone aị < 2 the amplitude b of the self-excited oscillation and the am­ plitude a0 of the forced oscillation are determined by equations (5.3), (5.4)

9*

Trang 8

132 Nguyen Van Dao

( 5 6 ) 6* = 4 Ị l - - ặ Ị

( 5 7 ) f2? 2 = a ỗ Ị f2( ^2- y 2) 2 + í 32Ị í 32- y 2 + e Ị l - - ặ Ị Ị Ị

T h e re sp o n se curves 5 = = 2?(v) a n d A = ~ = A(v) c a lc u la te d b y the fo rm u la e (5 6 ), (5 7 ) f o r the case J = 8 /2 7 , ÍÌ = = 1, e = 0 1 are represented in F ig 3 In th is

Trang 9

F ig u re , th e p lo t is a lso depicted o f the re sp o n se c u rv e (c u rv e 3, F ig 2) fo r 7 = 8 /2 7

F ig 3 sh o w s the in te ra c tio n betw een the fo rce d a n d self-excited o sc illa tio n s in the zo n e

n ear the re so n a n ce zon e F o r e x a m p le , i f w e in c re a se the e x citin g fre q u e n cy y fro m the v a lu e s n e a r 1, then w e first o b se rv e the sim u lta n e o u s o rig in o f b o th fo rce d a n d se lf­ excited o s c illa tio n s T h e fo rce d o s c illa tio n d e v e lo p s a lo n g the b ra n ch M M ị, then it

su d d e n ly ju m p s to M 2 -* A /3 F r o m A/ 3 it ju m p s to N. W h ile the self-e xcite d

o s c illa tio n chan ge s a lo n g the b ra n c h p -+ P ị. T h is o sc illa tio n d isa p p e a rs on p 2 -> p 3

a n d a p p e a rs ag a in o n the b ra n ch p 3 -+ Q. T h u s , in the e xam p le co n sid e re d , we see th a t the sh e ar fo rce d o s c illa tio n o c c u rs o n ly in the in te rv a l [v2 = Vp , V2 = vị]. O u tsid e th is

in te rv a l, there e xist sim u lta n e o u sly b o th fo rc e d a n d self-excited o sc illa tio n s O b s e rv in g the o s c illa tio n d ia g ra m w h en in c re a s in g the e x c itin g fre q u e n cy y , w e see first the b eat (b e cause y is n e a r Q). I n the in te rv a l [vị , vị] the beat d isa p p e a rs an d there is o n ly the

h a rm o n ic o s c illa tio n w ith e xcitin g fre q u e n c y In c r e a s in g y s till m o re we see that the b eat

ap p e a rs a g a in T h e in te rv a l [vị yv\] is c a lle d th e fre q u e n c y e n tra in m e n t in te rva l A s it seen in F ig 3, the fre q u e n cy e n tra in m e n t zo n e is n a rro v e r th a n that in the se c o n d -o rd e r system [10]

T o c h e c k the v a lid it y o f the th e o re tic a l re su lts a n a n a lo g co m p u te r a n a ly sis has been

c a rrie d o u t E x a m p le s o f the w a v e fo rm s o b ta in e d b y m o d e llin g the o rig in a l e q u a tio n (4 1 ) f o r the p a ra m e te rs Q = Ỉ = 1, e = 0 1 , eP = 0.08, are sh o w n in F ig 4 T h e F ig u r e

c o n ta in s a ll the types o f o s c illa tio n s th a t are p re d ic te d b y the theory

Refererces

1 z O sin sk i, Vibrations o f an one-degree o f freed o m sy ste m with non-linear internal friction and relaxa­ tion, Proceedings o f In tern atio n al C onference o n N o n -lin e a r O scillations, III, Kiev 1963.

2 z O sin s k i, G B o y a d j i e v , The vibrations o f the s y s te m with non-linear friction and relaxation with slowly variable coefficients, Proceedings o f the F o u rth Conference on Non-linear Oscillations, P raque

1967

3 H R S r i r a n g a r a j a n , p S rin iv a s a n , A pplication o f ultraspherical polynom ials to fo rc e d oscillations

of a third order non-linear system, J Sound and V ibration, 36, 4, 1974.

4 H R S r i r a n g a r a j a n , p S rin iv a s a n , Ultraspherical polynom ials approach to the study o f third-order

non-linear systems, J Sound and V ibration, 40, 2, 1975.

5 A T o n d l , N otes on the solution o f fo r c e d oscillations o f a third-order non-linear system , J Sound a n d

Vibration, 37, 2, 1974

6 A T o n d l , Additional note on a third-order system , J Sound an d V ibration, 47, 1, 1976.

7 z O sin s k i, N g u y e n V a n D a o , Param etric oscillation o f an uniform beam in a rheological m odel\

Proceedings of Second National Conference on Mechanics, Hanoi 1977

8 N N B o g o l i u b o v , Y u a M i t r o p o l s k y , Asymptotic methods in the theory o f non-linear oscillations

M oskva 1963

9 N g u y e n V a n D a o , Fundamental m ethods o f non-linear oscillations, H anoi 1969.

10 H Kauderer, Nichtỉineare Mechanik, Berlin 1958.

11 N g u y e n V a n D a o , a ton-linear oscillations o f the th ird order systems, Part I Autonom ous syste m s,

J Techn Phys., 20, 4, 1979

Trang 10

134 Nguyen Van Dao

S t r e s z c z c n i c

N IE L IN IO W E D R G A N IA U K L A D 0 W T R Z E C IE G O R Z Ẹ D U

C Z Ẹ ấ ớ II N IE A U T O N O M IC Z N E UKJLADV

N in iejsza p raca stanowi drugạ czẹsé pracy [11] R o z p a trz o n o w niej d rg an ia nieautonom icznei

u klad u trzcciego rzẹdư w przypadku rezonansu W yzn aczo n o w aru n ek statecznosci ustalonych drga

Z b a d a n o szczegolny przypadek low nania Duffinga w dalszym ciạgu rozw azono w ym uszone d rg ar sam ow zbudnego ukỉad u Irzccicgo rzẹdu P rzep ro w ad zo n o ek sperym entalne b ad an ia n a maszynie anal gowej d la weryiikacji teoretycznych wynikow

p e 3 K) M e

H E J IH H E H H b lE K O /IE E A H H fl C H C T E M T P E T b E r O n O P J M K A

MACTB I I H E A B T O H O M H b lE C H C T E M b I

H acTonm aH p a ố o T a C0CTaB/iHeT D T o p y io M acTb paốoTbi [11] B H e ft paccMOTpeiibi Ko/ieốâHHH H eaB IIOMHOH CHCTCMbi T p e T b c r o n ^ p H A K a B c n ry q a e p e 3 0 H a H c a O n p e A e i e H o ycjTOBHe y c ro ita H B O C T H y c r a

b h b l l i h x c h K O Jie6aH H H H c cjieA O B aH 'lac T H B ift c jry M aH y p â B H e H H H i l a ộ Ộ H H r a B A a jiB H e ftu ieM p accM

p e H b i B fem y > K A eH H b ie K O /ieốaHHH a B T O K o ie ố a T e jn ,H o ỉi c n e r e M b i T p e T b e r o n o p a ự Ị K a r ip o B e A e H b i 3KC

p H M e H T a jib H b ie HCCjieAOBaHHfl H a aH ajioroBoft M a iiu iH e OHH n p O B e p K H T e o p e T im e c K H X pe3y/ifeTaTO B

T E C H N IC A L U N IV E R S IT Y , H A N O I, V IETN A M

Received October 17, 1978.

Ngày đăng: 08/04/2015, 15:29

TỪ KHÓA LIÊN QUAN