1. Trang chủ
  2. » Giáo án - Bài giảng

de thi hoc 2 năm hoc 2012 - 2013

4 85 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 150 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

ĐỀ THI HỌC KÌ II.. Hãy chọn phương án đúng.. Khi đó, góc giữa đường thẳng SC và ABCD có số đo bằng bao nhiêu?. Gọi I là trung điểm AB.. Tính diện tích tam giác SIO.

Trang 1

ĐỀ THI HỌC KÌ II NĂM HỌC 2012 – 2013

MÔN : TOÁN KHỐI 11 THỜI GIAN : 90 phút

ĐỀ 1 ( Đề thi gồm 2 trang )

PHẦN 1: TRẮC NGHIỆM KHÁCH QUAN (3 điểm) Trong mỗi câu sau có 4 phương án

trả lời A, B, C, D, trong đó chỉ có một phương án đúng Hãy chọn phương án đúng

Câu 1 Tìm giới hạn sau xlim 2x2 2x là:

3 7x + ¥

®

- +

A B C D

Câu 2 : Tìm giới hạn sau lim3 2 24 3

9

x

x

− +

− là

A 1 B 2

9

Câu 3 : Tìm đạo hàm của hàm số sau y = 3

2 1

xx+ tại x0 = - 2 là :

Câu 4 : Với g( x ) = 2 2 5

1

x

− +

− ; g’(2) bằng :

Câu 5 : Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD),

SA = a 2 Khi đó, góc giữa đường thẳng SC và (ABCD) có số đo bằng bao nhiêu?

A 1350 B 450 C 900 D 600

Câu 6 : Một hình hộp chữ nhật có các kích thước là 3 ; 4 và 5 Khi đó đường chéo của hình

hộp có độ dài là:

PHẦN 2: TỰ LUẬN (7 điểm)

Câu I ( 2 điểm ) :

a ) Tìm giới hạn của hàm số sau : lim3 3

1 2

x

x x

− + −

b ) Tìm giới hạn của hàm số sau : 2

2

lim

2

x

x

c) Cho hàm số: y = f(x) =

2 2 15

3 5; 3

x x

+

( Với m là tham số )

Tìm m để hàm số liên tục tại x = - 3

Câu II ( 2 điểm ) :

Trang 2

1) Tìm đạo hàm của các hàm số sau

a) y = (2 x2 + x3)( x4 − 7 ) x b) 2 1

2

x y

x

+

=

2) Cho hàm số y = f(x) = x3−6x2 +9x ( C )

Viết phương trình tiếp tuyến của đồ thị ( C ) tại điểm có hoành độ bằng 2

Câu III ( 1 điểm ) :

Chứng minh rằng phương trình x5 − 3x4 + 5x− = 2 0 có ít nhất ba nghiệm nằm trong khoảng ( - 2 ; 5 )

Câu IV ( 2 điểm ): Cho tứ diện S ABC có đáy ABC là tam giác giác đều cạnh a , tâm O

và SA = SB = SC = 21

6

a Gọi I là trung điểm AB

a) Chứng minh : SO ⊥ ( ABC ) Tính SO

b) Tính góc hợp bởi mp ( SAB ) với mp ( ABC ) Tính diện tích tam giác SIO

- Hết

Trang 3

-ĐÁP ÁN – THANG ĐIỂM PHẦN 1: (3 đ ) Mỗi câu ( 0 , 5)

PHẦN II :

điểm

Câu I

( 2 đ)

a) 3

3 lim

1 2

x

x x

( 3)( 1 2)

3

x x

− + + = + + =

0, 5

b)

2 2

lim

2

x

x

0,5 c) Ta có : f ( -3 ) = m-5

2

2 15 ( 3)( 5)

x

− − = + − = − = −

Để hàm số liên tục tại x = -3 ⇔lim ( )x→−3 f x = − ⇔ − = − ⇔ =f( 3) m 5 2 m 2 Vậy với m = 2 hàm số y = f ( x ) liên tục điểm x = -3

0 , 5

0 , 5

Câu II

1 ) a) y’= (4x+ 3 )(x2 x4 − 7 ) (4x + x3 − 7)(4x+ 3 )x2 b) y’ = 2

5 (x 2)

0, 5 0,5

2 ) y’ ( 2 ) = 2

3.2 − 12.2 9 + = − 3 ; y( 2 ) = 2 Vậy PTTT tại điểm y = -3 ( x – 2 ) + 2 = - 3 x + 8

0 ,5

0 , 5 Câu III

( 1đ )

5 3 4 5 2 0

xx + x− = ( 1 ) Đặt f ( x ) = x5 − 3x4 + 5x− 2 Tính f( 0 ) = - 2 ; f ( 1 ) = 1 ; f ( 2 ) = -8 ; f ( 3 ) = 13 Xét ( 0 ; 1 ) ⇒ f(0) (1) 0f < ⇒ ( 1 ) có 1 nghiệm Xét ( 1 ; 2 ) ⇒ f(1) (2) 0f < ⇒( 1 ) có 1 nghiệm Xét ( 2 ; 3 ) ⇒ f(2) (3) 0f < ⇒ ( 1 ) có 1 nghiệm Vậy ( 1 ) có 3 nghiệm thuộc khoảng ( - 2 ; 5 )

0 , 25

0 , 5

0 ,25

Câu IV

( 2 đ)

a ) Ta có : 21

6

a

SA SB SC

 = = =

 và ∆ ABC đều ⇒SO⊥(ABC)

Ta có : ∆ SOC vuông tại O /

Do đó:

36 36 4

SO =SCOC = − =

2

a SO

⇒ =

0, 5

0 ,5

b ) Vì IC AB

SI AB

 ⊥

 ⇒ góc ( ( SAB); ( ABC ) ) = ϕ Ta có : tan ϕ = SO 3

60

ϕ = Mặt khác :

2

SIO

a

S∆ = SO IO = ( đvdt )

0 , 5

0 , 5

Trang 4

:

Ngày đăng: 31/01/2015, 12:00

w