Phương pháp khối phổ (tiếng Anh: Mass spectrometry MS) là một kĩ thuật dùng để đo đạc tỉ lệ khối lượng trên điện tích của ion; dùng thiết bị chuyên dụng là khối phổ kế. Kĩ thuật này có nhiều ứng dụng, bao gồm: Xác định các hợp chất chưa biết bằng cách dựa vào khối lượng của phân tử hợp chất hay từng phần tách riêng của nó Xác định kết cấu chất đồng vị của các thành phần trong hợp chất Xác định cấu trúc của một hợp chất bằng cách quan sát từng phần tách riêng của nó Định lượng lượng hợp chất trong một mẫu dùng các phương pháp khác (phương pháp phổ khối vốn không phải là định lượng) Nghiên cứu cơ sở của hóa học ion thể khí (ngành hóa học về ion và chất trung tính trong chân không) Xác định các thuộc tính vật lí, hóa học hay ngay cả sinh học của hợp chất với nhiều hướng tiếp cận khác nhau. Một khối phổ kế là một thiết bị dùng cho phương pháp phổ khối, cho ra phổ khối lượng của một mẫu để tìm ra thành phần của nó. Có thể ion hóa mẫu và tách các ion của nó với các khối lượng khác nhau và lưu lại thông tin dựa vào việc đo đạc cường độ dòng ion. Một khối phổ kế thông thường gồm 3 phần: phần nguồn ion, phần phân tích khối lượng, và phần đo đạc.
Trang 1HCMC 2013
(C) HKD 2013
BACKGROUND
uses high energy electrons to break a molecule into fragments.
Separation and analysis of the fragments provides information about:
Molecular weight
Structure
Trang 2 The impact of a stream of high energy electrons causes the molecule to lose an electron forming a radical cation
A species with a positive charge and one unpaired electron
H
-Molecular ion (M + ) m/z = 16
(C) HKD 2013
BACKGROUND
electrons can also break the molecule or the radical cation into fragments.
(not detected by MS) m/z = 29
molecular ion (M+) m/z = 30
+ C H
H H
+ H
H
H C H
H C H H
H C H
H C H H
H C H H
Trang 3 Molecular ion (parent ion):
The radical cation corresponding to the mass of the original molecule
mass in the spectrum
Some exceptions w/specific isotopes
Some molecular ion peaks are absent.
H H
H H
(C) HKD 2013
BACKGROUND
M+base peak
Trang 4 C3H6O and C3H8O have nominal masses of 58 and 60, and can be distinguished by low-resolution MS.
C3H8O and C2H4O2 both have nominal masses of 60.
Distinguish between them by high-resolution MS.
C2H4O2
C3H8O
60.02112
60.05754 60
60
Molecular Formula
Nominal Mass
Precise Mass
) High resolution MS can replace elemental analysis for chemical formula confirmation.
Mass Analzyer Detector
System
Vacuum pumps system
Trang 5 Electron impact (EI): vapor of sample is bombarded with
Laser Desorption & Matrix-Assisted Laser Desorption
( MALDI ): hit the sample with a laser beam.
Electrospray Ionization ( ESI ): a stream of solution passes through a strong electric field (106V/m).
WAYS TO PRODUCE IONS
(C) HKD 2013
BACKGROUND
Trang 6MALDI FAB
(C) HKD 2013
BACKGROUND
ICP
Trang 7IONIZATION METHODS
ionization technique, limited to relatively low
MW compounds (<600 amu).
2 Chemical Ionization (CI): ionization with very little fragmentation, still for low MW compounds (<800 amu).
very labile compounds.
4 Spray ionization (SI)
for LC-MS, biomolecules, etc.(C) HKD 2013
BACKGROUND
Electron ionization
energy electrons (typically 70 eV).
fragmentation.
M
Neutral molecule
Molecular ion
M +
-E << 70 eV
+++ + +
Fragment ions
Trang 8Electron ionization
Advantages
• inexpensive, versatile and reproducible.
• fragmentation gives structural information.
• large databases if EI spectra exist and are searchable.
Disadvantages
• fragmentation at expense of molecular ion.
• sample must be relatively volatile.
(C) HKD 2013
BACKGROUND Chemical ionization (CI)
exchange, electron capture, adduct formation, etc.
Common CI reagents: methane, ammonia, isobutane, hydrogen, methanol.
thermoneutral ion-molecule reactions will occur.
choice of reagent allows tuning of ionization.
Trang 9Positive Chemical ionization (CI)
Uses reagent gas (methane, isobutane or ammonia)
Soft ionization method Æ only little fragmentations
Produces positive ions
Detects pseudo molecular ions Æ molecular weight information can be obtained
Lower ion source temperature will produce more pseudo molecular ions Be careful that lower ion source temperature can cause more contamination.
Secondary reagent ions
Uses reagent gas (methane, isobutane or ammonia)
Soft ionization method Æ only little fragmentations
Produces negative ions
Higher reagent gas pressure will produce more low energy electrons, and in turn, more molecular ions.
Lowering the ion source temperature can produce more resonance capture reaction and increase molecular ions.
Analytes
(C) HKD 2013
Trang 10MASS ANALYSER – MAGNETIC SECTOR
m/z = B(C) HKD 20132r2/2V
BACKGROUND
9 Classical mass spectra
9 Very high reproducibility
9 Best quantitative performance of all MS analyzers
9 High resolution
9 High sensitivity
9 10,000 Mass Range
9 Requires Skilled Operator
9 Usually larger and higher cost than other mass analyzers
9 Difficult to interface to ESI
9 Low resolution MS/MS without multiple analyzers
MASS ANALYSER – MAGNETIC SECTOR
Trang 11MASS ANALYSER – QUADRUPOLE
z 䠖charge
k 䠖constant
V :voltage applied to rods
We can select mass
(C) HKD 2013
Trang 12MASS ANALYSER – QUADRUPOLE
9 Relatively small and low-cost systems
9 Able to separate ions at lower vacuum levels (10-2 to 10-3Pa)
9 Quadrupoles are now capable of routinely analyzing up to a m/q ratio
of 3000, which is useful in electrospary ionization of biomolecules
Trang 13MASS ANALYSER – ION TRAP
MASS ANALYSER – ION TRAP
Trang 149 Poor quantitation.
9 Less sensitive
9 Non-classical spectrum
9 Electrodes tend to be contaminated
9 Limited column flow rate
MASS ANALYSER – ION TRAP
(C) HKD 2013
BACKGROUND
MASS ANALYSER – Time-Of-Flight
m/z = 2eUt2/L2
Trang 15MASS ANALYSER – Time-Of-Flight
resolution = 2dt/t(C) HKD 2013
BACKGROUND
9 Good for kinetic studies of fast reactions and for use with gaschromatography to analyze peaks from chromatograph
9 High ion transmission
9 Can register molecular ions that decompose in the flight tube
9 Extremely high mass range (>1MDa)
9 Fastest scanning
9 Requires pulsed ionization method or ion beam switching (duty cycle
is a factor)
9 Low resolution (4000)
9 Limited precursor-ion selectivity for most MS/MS experiments
MASS ANALYSER – Time-Of-Flight
Trang 16Fourier Transform Ion Cyclotron Resonance
Trang 17Fourier Transform Ion Cyclotron Resonance
(FT ICR) analyzers
= qB/m = v/r
The decay over time of the image current resulting after applying ashort radio-frequency sweep is transformed from the time domain into afrequency domain signal by a Fourier transform
(C) HKD 2013
BACKGROUND
9 The highest recorded mass resolution of all mass spectrometers(>500,000)
9 Very good accuracy (<1ppm)
9 Well-suited for use with pulsed ionization methods such as MALDI
9 Non-destructive ion detection; ion remeasurement
9 Stable mass calibration in superconducting magnet FTICR systems
Fourier Transform Ion Cyclotron Resonance
(FT ICR) analyzers
Trang 189 Expensive.
9 Requires superconducting magnet
9 Subject to space charge effects and ion molecule reactions
9 Artifacts such as harmonics and sidebands are present in the massspectra
9 Many parameters (excitation, trapping, detection conditions) comprisethe experiment sequence that defines the quality of the massspectrum
9 Generally low-energy CID, spectrum depends on collision energy,collision gas, and other parameters
Fourier Transform Ion Cyclotron Resonance
(FT ICR) analyzers
(C) HKD 2013
BACKGROUND
Only cations are detected.
Radicals are “invisible” in MS.
depends on the mass to charge ratio (m/z).
Most cations formed have a charge of +1 so the amount of deflection observed is usually dependent on the mass of the ion.
Trang 19Mass, as m/z Z is the charge, and for doubly charged ions (often seen in
macromolecules), masses show up at half their proper value
High mass
[M+H]+(CI)
Or M•+ (EI)
“molecular ion”
Unit mass spacing
Fragment Ions Derived from molecular ion
or higher weight fragments
In CI, adduct ions, [M+reagent gas] +
M + e - o M + + 2e
-Molecule High Energy
Electron
Molecular Ion (Radical Cation)
Trang 20 A partial MS of dopamine showing all peaks with intensity equal to or greater than 0.5% of base peak.
higher than M+
higher than M+
Trang 22S
Trang 242) Cleavage of 2 s bond (rearrangements)
C H 2
C H 2
Z H
+ .
3) Cleavage of Complex rearrangements(C) HKD 2013
1 Intensity of M.+ is Larger for linear chain than for branched compound
2 Intensity of M.+ decrease with Increasing M.W (fatty acid is
an exception)
3 Cleavage is favored at branching
reflecting the Increased stability of the ion
Trang 25M .+ is absent with heavy branching
Fragmentation occur at branching: largest fragment loss
Branched alkanes
Trang 26Molecular ion is stronger than
in previous sample
(C) HKD 2013
Illustration of first 3 rules
(Branched alkane with Smaller MW)
Molecular ion smaller than linear alkane
Cleavage at branching is favored
43
Trang 27Loss of Largest substituent Favored
Rule1: intensity of M .+
is smaller with branching
(C) HKD 2013
FRAGMENTATION PATTERNS
4 Aromatic Rings, Double bond, Cyclic structures stabilize M.+
5 Double bond favor Allylic Cleavage
Resonance – Stabilized Cation
Trang 28(C) HKD 2013
FRAGMENTATION PATTERNS
RULES
6 a) Saturated Rings lose a Alkyl Chain (case of branching)
b) Unsaturated Rings Retro-Diels-Alder
Trang 319 Cleavage of small neutral molecules (CO2, CO, olefins, H2O ….) results often from rearrangement.
CH2
CH2H
CH2
O C Y
- CH2=CH2 x
CH2
O C Y
forming the most stable carbocations.
Trang 32(C) HKD 2013
FRAGMENTATION PATTERNS
SUMMARY
Alkenes:
Fragmentation typically forms
resonance stabilized allylic carbocations
Trang 33m/z 41, 55, 69
Rule 4: Double Bond Stabilize M+
Rule 5: Double Bond favor
Allylic cleavage
CH2 +CH CH Et
EtMe
-Et
EtMe
CH2 CH CH +
EtMe
Fragment at the benzylic carbon, forming a
resonance stabilized benzylic carbocation
(which rearranges to the tropylium ion)
M+
C H
H C
H Br
H
C
H H
or
Trang 34Aromatics may also have a peak at m/z = 77 for the benzene ring.
9 1o alcohol usually has prominent peak at
m/z = 31 corresponding to H2C=OH+
Trang 35nitrogens are present).
Trang 36 D-cleavage forming oxonium ion
Loss of alkyl group forming oxonium ion
carbocation
Trang 38M+ = 134
C C C H H
H
H H
Trang 399 Loss of OR’: peak at M+ - OR’
9 Loss of R’: peak at M+ - R’
Trang 40identify possible molecular formulas for an unknown hydrocarbon, CnHm.
remainder in step 2)
Trang 41 Example: The formula for a hydrocarbon with M+ =106 can be found:
Add the heteroatoms to the formula.
peak at m/z = 102 has a strong peak at
1739 cm-1 in its IR spectrum Determine its molecular formula.