Section 3.4 FAR INFRARED AND MILLIMETER WAVE GAS LASERS3.4.1 Introduction Organic molecules used for far infrared and millimeter wave lasers number more than one hundred.. The molecular
Trang 1C 2 D 2 Laser
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
17.498 571050 (ν4+ν5)\Σ+
u → ν4 Band R(22) 174717.56 569.6 (ν4+ν5)\Σ+
u → ν4 Band R(21) 174717.61 567.8 (ν4+ν5)\Σ+
u → ν4 Band R(16) 175317.610 567.87 (ν4+ν5)\Σ+
u → ν4 Band R(20) 174717.665 566.08 (ν4+ν5)\Σ+
u → ν4 Band R(19) 174717.722 564.28 (ν4+ν5)Σ+
u → ν4 Band R(18) 174717.778 562.48 (ν4+ν5)Σ+
u → ν4 Band R(17) 1747,174817.835 560.68 (ν4+ν5)Σ+
u → ν4 Band P(2) 1747,175018.97 527.1 (2ν5+ν4)πu → 2ν4Σg Band Q? 176219.03 525.6 (2ν5+ν4)πg →
u → ν4 Band P(4) 174719.13 522.7 (2ν5+ν4)πu →
2ν4\Σ_g Band P(3)
1763
19.20 520.7 (ν4+ν5)Σ+
u → ν4 Band P(6) 175119.27 518.9 (2ν5+ν4)πg →
(ν5+ν4)∆u Band P(4)
1761
19.67 508.4 (ν4+ν5)∆u → ν4 Band P(18) 175419.947 501.33 (ν4+ν5)Σ+
u → ν4 Band P(18) 174720.010 499.75 (ν4+ν5)Σ+
u → ν4 Band P(19) 1747,175220.073 498.17 (ν4+ν5)Σ+
u → ν4 Band P(20) 174720.13 496.8 (ν4+ν5)Σ+
u → ν4 Band P(21) 174720.202 495.00 (ν4+ν5)Σ+
u → ν4 Band P(22) 174720.267 493.41 (ν4+ν5)Σ+
u → ν4 Band P(23) 174720.332 491.83 (ν4+ν5)Σ+
u → ν4 Band P(24) 1747
Trang 21 2 C 2 D 2 Laser
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
17.893 558.87 (ν4+ν-5)Σ+
u → ν4 Band R(15) 687018.84 530.8 (ν4+ν-5)Σ+
u → ν4 Band Q(?) 687019.511 512.84 (ν4+ν-5)Σ+
u → ν4 Band P(11) 687019.634 509.32 (ν4+ν-5)Σ+
u → ν4 Band P(13) 687019.758 506.12 (ν4+ν-5)Σ+
uu → ν4 Band P(15) 687019.884 502.93 (ν4+ν-5)Σ+
C 2 H 2 Laser
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
Trang 3C 2 H 2 Laser—continued
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
Trang 41 4 NH 3 Laser—continued
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
aQ(8,6), aQ(9,7), aQ(6,5), aQ(3,3), aQ(5,4), aQ(5,5), Q(7,6), aQ(4,4) or aQ(2,2)
Trang 51 4 NH 3 Laser—continued
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
11.99025 834.011 ν2 → 0 Band aP(5,2) 1766,1767,1770,
1771,179012.01008 832.634 ν2 → 0 Band aP(5,3) 1766,1767,1770,
1771,1777,179012.03872 830.653 ν2 → 0 Band aP(5,4) 1767,1770–1,179012.07912 827.875 ν2 → 0 Band sP(7,0) 1766,1767,1770,
1771,1774,1778,1779,1790,1792
1771,179012.26105 815.591 ν2 → 0 Band aP(6,2) 1766,1767,1770,
1771,179012.28136 814.242 ν2 → 0 Band aP(6,3) 1766,1767,1770,
1771,1783,179012.31072 812.300 ν2 → 0 Band aP(6,4) 1766,1767,1770,
1771,179012.35002 809.715 ν2 → 0 Band aP(6,5) 1766,1767,1770,
1771,1790,179212.56068 796.135 ν2 → 0 Band aP(7,3) 1766,1767,1770,
1771,1790,1792
12.59059 794.244 ν2 → 0 Band aP(7,4) 1766,1767,1770,
1771,1790,179212.63063 791.720 ν2 → 0 Band aP(7,5) 1766,1767,1770,
1771,1790,1792
Trang 61 4 NH 3 Laser—continued
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
1771,179012.82765 779.566 ν2 → 0 Band aP(8,2) 1767,1770,1790,
179212.84863 778.293 ν2 → 0 Band aP(8,3) 1766,1767,1770,
1771,1790,179212.87890 776.464 ν2 → 0 Band aP(8,4) 1766,1767,1770,
1771,1790,179212.91946 774.026 ν2 → 0 Band aP(8,5) 1766,1767,1770,
1771,1790,179212.97163 770.913 ν2 → 0 Band aP(8,6) 1766,1767,1770,
13.26978 753.592 ν2 → 0 Band aP(9,6) 1766–67,179013.33580 749.861 ν2 → 0 Band aP(9,7) 1766,179013.411 745.7 ν2 → 0 Band aP(9,8),
Trang 71 4 NH 3 Laser—continued
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
Trang 81 4 NH 3 Laser—continued
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
Trang 91 5 NH 3 Laser—continued
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
1 2 CF 4 Laser
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
Trang 101 2 CF 4 Laser—continued
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
Trang 111 3 CF 4 Laser—continued
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
Trang 121 4 CF 4 Laser—continued
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
Trang 13FClO 3 Laser
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
Trang 14SiF4 Laser
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
C 2 H 4 Laser
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
Trang 153.3.2.7 Seven-Atom Vibrational Transition Lasers
Table 3.3.2.6 Seven-Atom Vibrational Transition Lasers
W a v e l e n g t h
( m ) v a c
Frequency ( c m -1 ) T r a n s i t i o n a s s i g n m e n t C o m m e n t s
Trang 16Section 3.4 FAR INFRARED AND MILLIMETER WAVE GAS LASERS
3.4.1 Introduction
Organic molecules used for far infrared and millimeter wave lasers number more than one hundred Combined with the use of several different isotopes and the possibility of transitions between many different vibrational and rotational levels, reported lasing transitions are now numbered in the thousands The molecular gas lasers in this section are either excited by an electrical discharge or are optically pumped by narrowband pump sources to excite molecules into a specific rotational state of an excited vibrational state; the latter are usually operated cw or quasi-cw.
As noted in the introduction, in this section 20 µ m is used as the lower limit for the far infrared Four noble gas lasers have transitions in this far infrared region; tables of these laser lines are given in Section 3.4.2.
Section 3.4.3 presents tables of molecular far infrared and millimeter wave laser lines; these are listed by molecule and for each molecule lines are listed in order of increasing wavelength The uncertainty in the wavelength determination is noted in the second column Accurate measurements, typically 1 part in 105 or better, refer to vacuum since they are calculated from frequency measurements Interferometric wavelength measurements may refer to vacuum, the laser medium, or air but are of low accuracy, ranging from a few percent
to (rarely) 1 part in 104 Thus within the measurement uncertainties almost all measurements may be considered to refer to vacuum The third column lists the CO2 laser pump transition and or may include various comments (given in Section 3.6) about the laser output power, relative polarization of the output radiation with respect to the pump radiation, and the pump transition Pump transitions are usually those for a CO2 laser; if an isotopic CO2 or other pump laser was used or if the laser was pumped by an electric discharge, this is noted among the comments
Laser output powers depend not only on molecular properties but also on the geometry and pump power, factors that vary with the design of the experiment The reader is advised
to consult the original references for this information and its effect on the laser performance For those interested in the most intense far-infrared and millimeter wave laser lines, a table of calibrated power measurements of over 150 lines between 40 µ m and 2 mm having output powers of 1 mW or more is given in Douglas.1
References with titles or descriptions of the contents are given in Section 3.7 The references may include the original report of lasing and other reports relevant to the identification of the transition and laser operation; however, because of the huge literature, not all relevant measurements are noted.
1 Douglas, N G., Millimetre and Submillimetre Wavelength Lasers: A Handbook of cw
Measurements, Springer-Verlag, Berlin Heidelberg (1989).
Trang 17Further Reading
Cheo, P K., Ed., Handbook of Molecular Lasers, Marcel Dekker Inc., New York (1987).
Dodel, G., On the history of far-infrared (FIR) gas lasers: Thirty-five years of research and
application, Infrared Phys & Technol 40, 127 (1999).
Inguscio, M., Moruzzi, G., Evenson, K M., and Jennings, D A., A review of frequency
measurements of optically pumped lasers from 0.1 to 8 THz, J Appl Phys 60, R161
(1986).
Jacobsson, S., Optically pumped far infrared lasers, Infrared Phys 29, 853 (1989).
Knight, D J E., Far-Infrared CW Gas Lasers in Handbook of Laser Science and
Technology, Vol II: Gas Lasers, CRC Press, Boca Raton, FL (1982), p 411 and Handbook of Laser Science and Technology, Suppl 1: Lasers, CRC Press, Boca
Raton, FL (1991), p 415.
Moruzzi, G., Winnewisser, B P., Winnewisser, M., Mukkopadhyay, I., and Strumia, F.,
Microwave, Infrared and Laser Transitions of Methanol: Atlas of Assigned Lines from 0 to 1258 cm-1, CRC Press, Boca Raton, FL (1995).
Tobin, M S., A review of optically pumped NMMW lasers, Proc IEEE 73, 61 (1985).
For reports of new infrared lasers, see the International Journal of Infrared and
Millimeter Waves (the proceedings of the Infrared and Millimeter Wave conference series are
published in this journal), Infrared Physics and Technology, Journal of Molecular
Spectroscopy, Journal of Applied Physics, IEEE Journal of Quantum Electronics, and Quantum Electronics (Russian).
Trang 183.4.2 Tables of Atomic Far Infrared Gas Lasers
(for other noble gas transitions, see the tables and references in Section 3.1.2.14.)
Table 3.4.1 Atomic Far Infrared Gas Lasers
Helium
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 19W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 203.4.3 Tables of Far Infrared and Millimeter Wave Gas Lasers
Molecular gas lasers included in this section are ordered as follows:
CH379Br bromomethane (methyl bromide) – 79Br 3.4.41
CH381Br bromomethane (methyl bromide) – 81Br 3.4.42
Trang 21Molecular gas lasers included in this section—continued
CH3CH2Br (C2H5Br) bromoethane (ethyl bromide) 3.4.49
CH3CH2Cl (C2H5Cl) chloroethane (ethyl chloride) 3.4.50
CH3CH2F (C2H5F) fluoroethane (ethyl fluoride) 3.4.51
CH3CH2I (C2H5I) iodoethane (ethyl iodide)3.4.52
CH3CH2OH (C2H5OH) ethanol (ethyl alcohol)3.4.53
CH3CN ethanenitrile (acetonitrile, cyanomethane, methyl cyanide) 3.4.56
COH2 (H2CO) methanal (formaldehyde)3.4.73
DCOOD dideuteromethanic acid (dideutero formic acid) 3.4.75
HCCCH2F (FCH2C:CH) 3-fluoropropyne (propargyl fluoride) 3.4.82
Trang 22Molecular gas lasers included in this section—continued
HCOOD deuterooxymethanic acid (deuteroxy formic acid)3.4.87
SiHF3 (SiHF3) trifluorosilane (silyl fluoride) 3.4.107
Trang 24Dihydroxyethane (Ethylene Glycol) – C 2 H 4 O 2 H 2 —continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 25Deuterotrifluoromethane – CDF 3 —continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 29Trideuterofluoromethane – CD 3 F—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 30Trideuterofluoromethane – CD 3 F—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 31Trideuterofluoromethane – CD 3 F—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 33Trideuteroiodomethane – CD 3 I—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 34Deuterooxytrideuteromethanol – CD 3 OD—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 35Deuterooxytrideuteromethanol – CD 3 OD—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 36Deuterooxytrideuteromethanol – CD 3 OD—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 38Deuterooxytrideuteromethanol – 1 3 CD 3 OD—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 39Deuterooxytrideuteromethanol – 1 3 CD 3 OD—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 41Trideuteromethanol – CD 3 OH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 42Trideuteromethanol – CD 3 OH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 43Trideuteromethanol – CD 3 OH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 44Trideuteromethanol – CD 3 OH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 45Trideuteromethanol – CD 3 OH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 46Trideuteromethanol – CD 3 OH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 47Trideuteromethanol – CD 3 OH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 48Trideuteromethanol – CD 3 OH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 50Trideuteromethanol – 1 3 CD 3 OH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 51Trideuteromethanol – 1 3 CD 3 OH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 54Chlorodifluoromethane – CHClF 2 —continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 55Dideuteromethanol – CHD 2 OH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 56Cis 1,2-Difluoroethene – CHFCHF—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 57Difluoromethane – CHF 2 —continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 59Bromoethene (Vinyl Bromide) – CH 2 CHBr—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 61Fluoroethene (Vinyl Fluoride) – CH 2 CHF—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 62Fluoroethene (Vinyl Fluoride) – CH 2 CHF—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 63Fluoroethene (Vinyl Fluoride) – CH 2 CHF—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 64Fluoroethene (Vinyl Fluoride) – CH 2 CHF—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 66Deuteromethanol – CH 2 DOH—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 67Difluoromethane – CH 2 F 2 —continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 68Difluoromethane – CH 2 F 2 —continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s
Trang 69Difluoromethane – 1 3 CH 2 F 2 —continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 70Difluoromethane – 1 3 CH 2 F 2 —continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 741,1,1-Trifluoroethane – CH 3 CF 3 —continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 78Ethanal (Acetaldehyde) – CH 3 CHO—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m)
Trang 79Chloromethane (Methyl Chloride) – CH 3 Cl—continued
W a v e l e n g t h
( m)
U n c e r t a i n t y ( m) C o m m e n t s R e f e r e n c e s