Figure 3.2.4 Simplified energy level diagram for singly ionized gold showing the number of laserlines in each supermultiplet.. Figure 3.2.5 Simplified energy level diagram for singly ion
Trang 1Figure 3.2.4 Simplified energy level diagram for singly ionized gold showing the number of laser
lines in each supermultiplet The energies of the He and Ne metastables and ground-state ions arealso shown with respect to the ground state of the neutral gold atom
Trang 2Figure 3.2.5 Simplified energy level diagram for singly ionized zinc showing the majority of
observed Zn+ laser lines The energies of the He and Ne metastables and ground-state ions are also
shown with respect to the ground state of the neutral zinc atom (From Bridges, W B., Methods of
Experimental Physics, Vol 15A, Tang, C L., Ed., Academic Press, New York, 1979 With
permission.)
Trang 3Figure 3.2.6 Simplified energy level diagram for singly ionized mercury showing the majority of
observed Hg+ laser lines The energies of the He and Ne metastables and ground-state ions arealso shown with respect to the ground state of the neutral mercury atom (From Bridges, W B.,
Methods of Experimental Physics, Vol 15A, Tang, C L., Ed., Academic Press, New York, 1979.
With permission.)
Trang 4Figure 3.2.7 Simplified energy level diagram for singly ionized cadmium showing the majority of
observed Cd+ laser lines The energies of the He and Ne metastables and ground-state ions arealso shown with respect to the ground state of the neutral cadmium atom (From Bridges, W B.,
Methods of Experimental Physics, Vol 15A, Tang, C L., Ed., Academic Press, New York, 1979.
With permission.)
Trang 5Figure 3.2.8 Energy level diagram for singly ionized neon showing the majority of Ne laserlines Energy levels are from Moore, C E., Reference 1757.
Trang 6Figure 3.2.9 Energy level diagram for singly ionized argon showing the majority of Ar laserlines Energy levels are from Moore, C E., Reference 1757.
Trang 7Figure 3.2.10 Simplified energy level diagram for Ar showing the blue-green laser lines in the4p → 4s supermultiplet (From Bridges, W B., Appl Phys Lett 4, 128, 1964 With permission.)
Trang 8Figure 3.2.11 Energy level diagram for doubly ionized argon showing the majority of Ar laserlines Energy levels are from Moore, C E., Reference 1757, except those shown dashed which arepositioned through isoelectronic arguments by McFarlane997 and Marling989.
Trang 9Figure 3.2.12 Energy level diagram for singly ionized krypton showing the majority of Kr laserlines Energy levels are from Moore, C E., Reference 1757; revisions from Minnhagen et al.1007
Trang 10Figure 3.2.13 Energy level diagram for doubly ionized krypton showing the majority of Kr
laser lines Energy levels are from Moore, C E., Reference 1757
Trang 11Figure 3.2.14 Energy level diagram for singly ionized xenon showing the majority of Xe laserlines Energy levels are from Moore, C E., Reference 1757, with revisions according toMinnhagen et al.1007
Trang 12Figure 3.2.15 Energy level diagram for doubly ionized xenon showing the majority of Xe laserlines Energy levels are from Moore, C E., Reference 1757, with revisions according to Gallardo
et al.875
Trang 133.2.3 Tables of Ionized Gas Lasers
The tables of ionized gas lasers and elements are arranged in the following order:
Group IA – Table 3.2.1 Group IB – Table 3.2.2 Group IIA – Table 3.2.3
silver gold
beryllium magnesium calcium strontium barium
carbon silicon germanium tin
helium neon argon krypton xenon
Trang 143.2.3 Tables of Ionized Gas Lasers
3.2.3.1 Group IA Lasers
Table 3.2.1 Potassium
Trang 193.2.3.3 Group IIA Lasers
Table 3.2.3 Beryllium
Trang 217/2 → (1S)4d 2D5/2 1076,1083,1084,
1087,1090,1111
868,905,953,10271034,1036,1039,1083,1085,11145
1090,1112
905,945,1034,1036,1039,1085,1145
Trang 221087,1090,1117
676,905,945,9531034,1036,1039,1064,1085,1145
Trang 23868,871,953,10231034,1039,1057,1058,1083,1085
1084,1087,1088,1090
868,871,953,10231034,1039,1057,1058,1083,1085
1090
1034,1057,1058,1084,1085
1087,1090
871,1034,1039,1057,1058,1082,1084,1085
1090
871,1034,1039,1057,1058,1082,1084,1085
Trang 240.728423 0.72843 1 (1S)6f 2F07/2 → (1S)6d 2D5/2 1076,1083,1084,
1087,1090
871,1034,1039,1057,1082,1084,1085
1087,1090
871,953,1034,1039,1059,1085
1087,1090
871,1034,1039,1059,1085
864,913,924,9511035,1060,1067,1102,1106,1132
Trang 26905,931,977
Trang 271083–4,1086–7,1090,1092,1144
1146
450,664,874,1038,1127
Trang 311087,1090,1092,1094,1187
Trang 320.651174 0.651180 ±0.000040 1 (2P0)6s 1P0 → (2P0)5p 1D2 1076,1083,1084,
1086,1087,1090,1191
981,1033,1041
1087,1192
981,1033,1041
Trang 333.2.3.8 Group VIA Lasers
Table 3.2.8 Oxygen
Trang 340.559237 0.559237 ±0.000006 2 (2P0)3p 1P1 → (2P0)3s 1P0 1086,1090,
1206
450,664,872,986,989,1026
Trang 360.497572 0.497610 ±0.000050 1 (3P)5p 2D05/2 → 4s4p4 2P3/2 1076,1083,1086,
1087,1090,1217
915,958,1034,1069
1087,1090,1218
915,958,1034,1069
1087,1090,1219
915,958,963,958,1034,1069
1087,1088,1090,1092,1221
915,943,958,963,1034,1069
1087,1090,1224
915,943,958,1069
Trang 37915,958,1034,1069
Trang 413.2.3.10 Group VII Lasers
Table 3.2.10 Fluorine
Trang 42873,927,997,1094
1094
857,873,927,997
Trang 431285
993,1037
Trang 440.521626 0.521630 ±0.000020 1 (2D0)6p 3F2 → (4S0)5d 3D0 1076,1082,1083,
1086,1087,1088,1094,1286
266,993,1037,1042,1105
1086,1087,1088,1090,1094,1287
266,866,867,910,993,1032,1037,1042,1105
266,862,866,911993,1032,1037,1042,1105,1141
1086,1087,1088,1090,1094,1291
266,862,866,911993,1032,1037,1042,1105,1141
1087,1088,
1094, 1292
993,1037,1104,1105
1086–1088,1090,1094,1293
267,862,866,911993,1032,1037,1042,1105,1141
Trang 451104
1076,1083,1087,1300
266,866,867,993,1032,1042,1037,1104
1094,1305
993,1032,1037,1104
1087,1094,1310
266,993,1032,1037
1311
993,1037
Trang 471054,1078,1087
1464
1054,1078,1087
3.2.3.12 Group VIIIA Lasers
Table 3.2.12 Helium
Trang 48450,653,907,989
1092,1094,1322
450,454,907,987989,1018,1030,1088,1137,1169
Trang 49450,454,907,989,1018,1030,1169
1094,1327
450,653,1169,1018,1030
1329
1030,1169,1172
Trang 50450,653,907,989,985
1094
450,907,989997,1092,1123
1089,1090,1092,1334
450,905,907,985989,997,1088,1092,1172
Trang 51450,880,888,1005,1096
880,888,907,929965,970,1005,1096,1142
1086,1090,1091,1347
888,965,1005,1096
1091,1349
888,965,1005,1096
Trang 53450,985,989,1018,1088,1092,
1169
1090,1094,1367
539,985,989,1088,1166
1369
450,974,1092,1143,1169,1172
1370
450,974,1092,1169
1085,1087,1372
978,880,1007,1077,1151
1094,1373
450,861,1007,1077,1116,
1087,1374
941,978,1007,1077,1128,1151
1116,1117
Trang 54940,941,978,1007,1019,1049,1077,1112,1151
1094,1389
450,933,1007,1116,1117
1391
450,1007,1116,1117
Trang 55880,1007,1077
Trang 57653,989,1024,1169
653,874,923,989983,1024,1025,1092,1153
Trang 601086,1087
979,1049,1077,1128,1151
Trang 61450,874,922,923,929,942,983,10241025,1074,1101,1122,1150,1487
Trang 63Section 3.3 MOLECULAR GAS LASERS
3.3.1 Electronic Transition Gas Lasers
3.3.1.1 Introduction
Molecular gas lasers involving electronic transitions include a wide variety of systems such as the diatomic halogens species, metal halides, CO, H2, N2, alkali dimers, molecular ions, and rare earth complexes Excitation by either electrical discharge or optical means is
by far the most common The former generally delivers the greater power, while the latter has much greater selectivity.
The tables of electronic transition molecular gas lasers are divided into subsections by the increasing number of atoms constituting the molecule: diatomic, triatomic, and poly- atomic Within the tables, the ordering scheme is
1 alphabetical order of the chemical formulae,
2 increasing isotopic mass,
3 increasing band-center wavelength,
4 increasing lower vibrational state energy,
5 increasing transition wavelength within a given vibronic group.
The range of wavelengths of electronic transition molecular gas lasers extends from 109.82 nm (a para-H2 transition) to 8210.2 nm (a N2 transition) The laser wavelengths listed are in air (if in vacuum, wavelengths are in italics) and are followed by the transition assignment The experimental conditions (pumping method, pump energy, and temperature and pressure of lasant and diluent species) and peak output are included in the comments in Section 3.6 References are grouped together in Section 3.7.
Trang 64Electronic transition molecular gas lasers included in this section are presented in alphabetical order as follows:
Diatomic electronic transition lasers – Table 3.3.1.1 :
Trang 653.3.1.2 Diatomic Electronic Transition Lasers
Table 3.3.1.1 Diatomic Electronic Transition Lasers
Trang 660.65817 A(O+u) → X(O+
g)(v',v'') = (21,32) P(127)
0.661110 A(O+u) → X(O+
g)(v',v'') = (16,28) P(199)
0.66405 A(O+u) → X(O+
g)(v',v'') = (21,33) R(125)
0.66406 A(O+u) → X(O+
g)(v',v'') = (17,29) R(254)
0.66457 A(O+u) → X(O+
g)(v',v'') = (21,33) P(127)
Trang 670.66710 A(O+u) → X(O+
g)(v',v'') = (19,32) P(58)
0.67191 A(O+u) → X(O+
g)(v',v'') = (9,24) R(198)
0.67272 A(O+u) → X(O+
g)(v',v'') = (9,24) P(200)
0.673448 A(O+u) → X(O+
g)(v',v'') = (16,30) R(197)
0.674241 A(O+u) → X(O+
g)(v',v'') = (16,30) P(199)
0.67704 A(O+u) → X(O+
g)(v',v'') = (17,31) R(254)
0.67804 A(O+u) → X(O+
g)(v',v'') = (17,31) P(256)
0.680156 A(O+u) → X(O+
g)(v',v'') = (16,31) R(197)
Trang 680.69667 A(O+u) → X(O+
g)(v',v'') = (20,37) R(170)
0.69742 A(O+u) → X(O+
g)(v',v'') = (20,37) P(172)
0.70403 A(O+u) → X(O+
g)(v',v'') = (17,35) R(254)
0.70507 A(O+u) → X(O+
g)(v',v'') = (17,35) P(256)
0.70725 A(O+u) → X(O+
g)(v',v'') = (19,38) R(10)
0.70730 A(O+u) → X(O+
g)(v',v'') = (19,38) P(12)
0.70759 A(O+u) → X(O+
g)(v',v'') = (19,38) R(56)
0.707677 A(O+u) → X(O+
g)(v',v'') = (16,35) R(197)
0.70784 A(O+u) → X(O+
g)(v',v'') = (19,38) P(58)
0.708506 A(O+u) → X(O+
g)(v',v'') = (16,35) P(199)
0.71065 A(O+u) → X(O+
g)(v',v'') = (20,39) R(170)
0.71096 A(O+u) → X(O+
g)(v',v'') = (17,36) R(254)
0.71141 A(O+u) → X(O+
g)(v',v'') = (20,39) P(172)
0.71199 A(O+u) → X(O+
g)(v',v'') = (17,36) P(256)
0.71714 A(O+u) → X(O+
g)(v',v'') = (21,41) R(102)
Trang 690.71770 A(O+u) → X(O+
g)(v',v'') = (21,41) R(125)
0.71775 A(O+u) → X(O+
g)(v',v'') = (20,40) R(170)
0.71825 A(O+u) → X(O+
g)(v',v'') = (21,41) P(127)
0.71848 A(O+u) → X(O+
g)(v',v'') = (20,40) P(172)
0.721908 A(O+u) → X(O+
g)(v',v'') = (16,37) R(197)
0.722799 A(O+u) → X(O+
g)(v',v'') = (16,37) P(199)
0.72915 A(O+u) → X(O+
g)(v',v'') = (19,41) R(56)
0.73236 A(O+u) → X(O+
g)(v',v'') = (17,39) R(152)
0.73238 A(O+u) → X(O+
g)(v',v'') = (17,39) R(254)
0.73349 A(O+u) → X(O+
g)(v',v'') = (17,39) P(256)
Trang 700.736693 A(O+u) → X(O+
g)(v',v'') = (16,39) R(197)
0.73682 A(O+u) → X(O+
g)(v',v'') = (17,40) P(154)
0.737584 A(O+u) → X(O+
g)(v',v'') = (16,39) P(199)
Trang 720.751735 A(O+u) → X(O+
g)(v',v'') = (16,41) R(197)
0.752653 A(O+u) → X(O+
g)(v',v'') = (16,41) P(199)
0.75363 A(O+u) → X(O+
g)(v',v'') = (21,46) R(102)
0.75408 A(O+u) → X(O+
g)(v',v'') = (21,46) P(104)
0.75409 A(O+u) → X(O+
g)(v',v'') = (21,46) R(125)
0.75419 A(O+u) → X(O+
g)(v',v'') = (20,45) R(170)
0.75622 A(O+u) → X(O+
g)(v',v'') = (24,49) R(123)
0.75683 A(O+u) → X(O+
g)(v',v'') = (24,49) P(125)
0.76048 A(O+u) → X(O+
g)(v',v'') = (31,56) R(43)
0.76068 A(O+u) → X(O+
g)(v',v'') = (31,56) P(45)
0.76122 A(O+u) → X(O+
g)(v',v'') = (21,47) R(102)
0.76165 A(O+u) → X(O+
g)(v',v'') = (21,47) R(125)
0.76169 A(O+u) → X(O+
g)(v',v'') = (21,47) P(104)
Trang 730.76204 A(O+u) → X(O+
g)(v',v'') = (34,59) R(23)
0.76215 A(O+u) → X(O+
g)(v',v'') = (34,59) P(25)
0.76223 A(O+u) → X(O+
g)(v',v'') = (34,59) R(21)
0.76224 A(O+u) → X(O+
g)(v',v'') = (21,47) P(127)
0.76235 A(O+u) → X(O+
g)(v',v'') = (34,59) P(23)
0.76256 A(O+u) → X(O+
g)(v',v'') = (20,46) P(172)
0.76763 A(O+u) → X(O+
g)(v',v'') = (31,57) R(43)
0.76784 A(O+u) → X(O+
g)(v',v'') = (31,57) P(45)
0.76904 A(O+u) → X(O+
g)(v',v'') = (34,60) R(23)
0.76916 A(O+u) → X(O+
g)(v',v'') = (34,60) P(25)
0.76930 A(O+u) → X(O+
g)(v',v'') = (34,60) R(21)
0.76941 A(O+u) → X(O+
g)(v',v'') = (34,60) P(23)
0.77486 A(O+u) → X(O+
g)(v',v'') = (31,58) R(43)
0.77506 A(O+u) → X(O+
g)(v',v'') = (31,58) P(45)
0.77612 A(O+u) → X(O+
g)(v',v'') = (34,61) R(23)
0.77624 A(O+u) → X(O+
g)(v',v'') = (34,61) P(25)
0.77635 A(O+u) → X(O+
g)(v',v'') = (34,61) R(21)
0.77647 A(O+u) → X(O+
g)(v',v'') = (34,61) P(23)
Trang 740.78237 A(O+u) → X(O+
g)(v',v'') = (31,59) P(45)
0.78330 A(O+u) → X(O+
g)(v',v'') = (34,62) R(23)
0.78342 A(O+u) → X(O+
g)(v',v'') = (34,62) P(25)
Trang 840.617730 B3Π2u → X1Σ+
g(35-13) R(107)
0.617900 B3Π2u → X1Σ+
g(33-13) R(58)
0.617970 B3Π2u → X1Σ+
g(34-13) R(89)
0.617990 B3Π2u → X1Σ+
g(34-13) P(86)
0.618245 B3Π2u → X1Σ+
g(33-13) P(60)
0.618325 B3Π2u → X1Σ+
g(35-13) P(109)
0.618490 B3Π2u → X1Σ+
g(34-13) P(91)
0.618580 B3Π2u → X1Σ+
g(33-13) P(65)
Trang 861.1214 B3Π2u → X1Σ+
g(11-44) P(42)
1.1216 B3Π2u → X1Σ+
g(11-44) R(58)
1.1226 B3Π2u → X1Σ+
g(11-44) P(60)
1.1334 B3Π2u → X1Σ+
g(13-46) R(84)
1.1347 B3Π2u → X1Σ+
g(12-45) P(129)
1.1348 B3Π2u → X1Σ+
g(13-46) P(86)
1.1464 B3Π2u → X1Σ+
g(12-46) P(63)
1.1502 B3Π2u → X1Σ+
g(13-47) P(57)
1.1510 B3Π2u → X1Σ+
g(13-47) R(57)
1.1515 B3Π2u → X1Σ+
g(13-47) P(82)
1.1522 B3Π2u → X1Σ+
g(13-47) R(75)
1.1529 B3Π2u → X1Σ+
g(13-47) R(82)
1.1698 B3Π2u → X1Σ+
g(13-48) P(75)
Trang 871.1711 B3Π2u → X1Σ+
g(13-48) R(75)
1.1718 B3Π2u → X1Σ+
g(13-48) R(82)
1.1740 B3Π2u → X1Σ+
g(14-49) P(62)
1.1750 B3Π2u → X1Σ+
g(14-49) R(63)
1.2170 B3Π2u → X1Σ+
gP(71), R(71)
1.2740 B3Π2u → X1Σ+
gP(76), R(76)
1.3010 B3Π2u → X1Σ+
g(27-66) P(66)
1.3020 B3Π2u → X1Σ+
g(27-66) R(66)
1.3040 B3Π2u → X1Σ+
gP(79), R(79)
1.3069 B3Π2u → X1Σ+
g(29-68) P(64)
1.3080 B3Π2u → X1Σ+
g(26-68) R(64)
Trang 881.3406 B3Π2u → X1Σ+
g(42-82) P(57)
1.3418 B3Π2u → X1Σ+
g(42-82) R(57)
1.3421 B3Π2u → X1Σ+
g(45-85) P(83)(44-84) P(75)(43-83) R(53)
1.3429 B3Π2u → X1Σ+
g(45-85) R(74)(45-85) R(72)(44-84) R(62)
Trang 890.62541 B3Π(0+) → X1Σ+
(v',v'') = (0,5) R(23)
6680,6683,6686,6689
1569
0.62546 B3Π(0+) → X1Σ+
(v',v'') = (0,5) R(22)
6680,6683,66866689,6692
1569
0.62546 B3Π(0+) → X1Σ+
(v',v'') = (0,5) R(23)
6680,6683,66866689,6692
1569
0.62639 B3Π(0+) → X1Σ+
(v',v'') = (0,5) P(25)
6683,6686,6692
1569
0.62645 B3Π(0+) → X1Σ+
(v',v'') = (0,5) P(24)
6680,6686,6689
1569
0.62645 B3Π(0+) → X1Σ+
(v',v'') = (0,5) P(25)
6680,6686,6689
1569
0.62651 B3Π(0+) → X1Σ+
(v',v'') = (0,5) P(25)
Trang 94(0,41) → (4,40)
0.5263 B1Πu → S1Σ+
g(4,11) → (7,11)
0.5269 B1Πu → S1Σ+
g(0,41) → (4,42)
0.5358 B1Πu → S1Σ+
g(4,11) → (8,11)
0.5362 B1Πu → S1Σ+
g(0,41) → (5,42)
0.5417 B1Πu → S1Σ+
g(7,8) → (11,8)
0.5424 B1Πu → S1Σ+
g(0,41) → (6,40)
0.5446 B1Πu → S1Σ^+
g(5,41) → (9,42)
0.5451 B1Πu → S1Σ+
g(4,11) → (9,11)
0.5459 B1Πu → S1Σ+
g(0,41) → (6,42)
0.5528 B1Πu → S1Σ+
g(5,41) → (10,42)
0.5599 B1Πu → S1Σ+
g(7,8) → (13,8)
Trang 950.5689 B1Πu → S1Σ+
g(7,8) → (14,8)
0.5755 B1Πu → S1Σ+
g}(4,31) → (16,31)
0.5773 B1Πu → S1Σ+
g(11,22) → (18,21)
0.5787 B1Πu → S1Σ+
g(11,29) → (18,28)
0.5867 B1Πu → S1Σ+
g(11,29) → (19,28)
0.5889 B1Πu → S1Σ+
g(11,29) → (19,30)
(0-0) Band R3(6)
110,1110.3365537 C3Πu → B3Πg
(0-0) Band R1(6)
110,1110.3366156 C3Πu → B3Πg
(0-0) Band R1(4)
110,1110.3366211 C3Πu → B3Πg
(0-0) Band R3(5)
110,1110.3366682 C3Πu → B3Πg
(0-0) Band R1(4)
110,1110.3366911 C3Πu → B3Πg
(0-0) Band R3(4)
110,1110.3367218 C3Πu → B3Πg
(0-0) Band R1(3)
110,1110.3368432 C3Πu → B3Πg
(0-0) Band P'3(20)
110,1110.3368917 C3Πu → B3Πg
(0-0) Band P3(19)
110,111
Trang 96(0-0) Band P'3(18)
110,1110.3369502 C3Πu → B3Πg
(0-0) Band P'2(18)
110,1110.3369542 C3Πu → B3Πg
(0-0) Band Q3(2)
110,1110.3369555 C3Πu → B3Πg
(0-0) Band P'2(2)
110,1110.3369575 C3Πu → B3Πg
(0-0) Band P'1(18)
110,1110.3369760 C3Πu → B3Πg
(0-0) Band P3(17)
110,1110.3369838 C3Πu → B3Πg
(0-0) Band P1(3)
110,1110.3369852 C3Πu → B3Πg
(0-0) Band P2(17)
110,1110.3370081 C3Πu → B3Πg
(0-0) Band P'1(4)
110,1110.3370121 C3Πu → B3Πg
(0-0) Band P'3(16)
110,1110.3370138 C3Πu → B3Πg
(0-0) Band P'1(16)
110,1110.3370161 C3Πu → B3Πg
(0-0) Band P1(16)
110,1110.3370169 C3Πu → B3Πg
(0-0) Band P'2(16)
110,1110.3370297 C3Πu → B3Πg
(0-0) Band P1(5)
110,1110.3370316 C3Πu → B3Πg
(0-0) Band P2(3)
110,1110.3370360 C3Πu → B3Πg
(0-0) Band P'1(15)
110,1110.3370374 C3Πu → B3Πg
(0-0) Band P1(15)
110,1110.3370434 C3Πu → B3Πg
(0-0) Band P2(15),P3(15)
110,111