1. Trang chủ
  2. » Công Nghệ Thông Tin

handbook of lasers phần 5 pdf

119 229 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 119
Dung lượng 1,51 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Figure 3.2.4 Simplified energy level diagram for singly ionized gold showing the number of laserlines in each supermultiplet.. Figure 3.2.5 Simplified energy level diagram for singly ion

Trang 1

Figure 3.2.4 Simplified energy level diagram for singly ionized gold showing the number of laser

lines in each supermultiplet The energies of the He and Ne metastables and ground-state ions arealso shown with respect to the ground state of the neutral gold atom

Trang 2

Figure 3.2.5 Simplified energy level diagram for singly ionized zinc showing the majority of

observed Zn+ laser lines The energies of the He and Ne metastables and ground-state ions are also

shown with respect to the ground state of the neutral zinc atom (From Bridges, W B., Methods of

Experimental Physics, Vol 15A, Tang, C L., Ed., Academic Press, New York, 1979 With

permission.)

Trang 3

Figure 3.2.6 Simplified energy level diagram for singly ionized mercury showing the majority of

observed Hg+ laser lines The energies of the He and Ne metastables and ground-state ions arealso shown with respect to the ground state of the neutral mercury atom (From Bridges, W B.,

Methods of Experimental Physics, Vol 15A, Tang, C L., Ed., Academic Press, New York, 1979.

With permission.)

Trang 4

Figure 3.2.7 Simplified energy level diagram for singly ionized cadmium showing the majority of

observed Cd+ laser lines The energies of the He and Ne metastables and ground-state ions arealso shown with respect to the ground state of the neutral cadmium atom (From Bridges, W B.,

Methods of Experimental Physics, Vol 15A, Tang, C L., Ed., Academic Press, New York, 1979.

With permission.)

Trang 5

Figure 3.2.8 Energy level diagram for singly ionized neon showing the majority of Ne laserlines Energy levels are from Moore, C E., Reference 1757.

Trang 6

Figure 3.2.9 Energy level diagram for singly ionized argon showing the majority of Ar laserlines Energy levels are from Moore, C E., Reference 1757.

Trang 7

Figure 3.2.10 Simplified energy level diagram for Ar showing the blue-green laser lines in the4p → 4s supermultiplet (From Bridges, W B., Appl Phys Lett 4, 128, 1964 With permission.)

Trang 8

Figure 3.2.11 Energy level diagram for doubly ionized argon showing the majority of Ar laserlines Energy levels are from Moore, C E., Reference 1757, except those shown dashed which arepositioned through isoelectronic arguments by McFarlane997 and Marling989.

Trang 9

Figure 3.2.12 Energy level diagram for singly ionized krypton showing the majority of Kr laserlines Energy levels are from Moore, C E., Reference 1757; revisions from Minnhagen et al.1007

Trang 10

Figure 3.2.13 Energy level diagram for doubly ionized krypton showing the majority of Kr

laser lines Energy levels are from Moore, C E., Reference 1757

Trang 11

Figure 3.2.14 Energy level diagram for singly ionized xenon showing the majority of Xe laserlines Energy levels are from Moore, C E., Reference 1757, with revisions according toMinnhagen et al.1007

Trang 12

Figure 3.2.15 Energy level diagram for doubly ionized xenon showing the majority of Xe laserlines Energy levels are from Moore, C E., Reference 1757, with revisions according to Gallardo

et al.875

Trang 13

3.2.3 Tables of Ionized Gas Lasers

The tables of ionized gas lasers and elements are arranged in the following order:

Group IA – Table 3.2.1 Group IB – Table 3.2.2 Group IIA – Table 3.2.3

silver gold

beryllium magnesium calcium strontium barium

carbon silicon germanium tin

helium neon argon krypton xenon

Trang 14

3.2.3 Tables of Ionized Gas Lasers

3.2.3.1 Group IA Lasers

Table 3.2.1 Potassium

Trang 19

3.2.3.3 Group IIA Lasers

Table 3.2.3 Beryllium

Trang 21

7/2 → (1S)4d 2D5/2 1076,1083,1084,

1087,1090,1111

868,905,953,10271034,1036,1039,1083,1085,11145

1090,1112

905,945,1034,1036,1039,1085,1145

Trang 22

1087,1090,1117

676,905,945,9531034,1036,1039,1064,1085,1145

Trang 23

868,871,953,10231034,1039,1057,1058,1083,1085

1084,1087,1088,1090

868,871,953,10231034,1039,1057,1058,1083,1085

1090

1034,1057,1058,1084,1085

1087,1090

871,1034,1039,1057,1058,1082,1084,1085

1090

871,1034,1039,1057,1058,1082,1084,1085

Trang 24

0.728423 0.72843 1 (1S)6f 2F07/2 → (1S)6d 2D5/2 1076,1083,1084,

1087,1090

871,1034,1039,1057,1082,1084,1085

1087,1090

871,953,1034,1039,1059,1085

1087,1090

871,1034,1039,1059,1085

864,913,924,9511035,1060,1067,1102,1106,1132

Trang 26

905,931,977

Trang 27

1083–4,1086–7,1090,1092,1144

1146

450,664,874,1038,1127

Trang 31

1087,1090,1092,1094,1187

Trang 32

0.651174 0.651180 ±0.000040 1 (2P0)6s 1P0 → (2P0)5p 1D2 1076,1083,1084,

1086,1087,1090,1191

981,1033,1041

1087,1192

981,1033,1041

Trang 33

3.2.3.8 Group VIA Lasers

Table 3.2.8 Oxygen

Trang 34

0.559237 0.559237 ±0.000006 2 (2P0)3p 1P1 → (2P0)3s 1P0 1086,1090,

1206

450,664,872,986,989,1026

Trang 36

0.497572 0.497610 ±0.000050 1 (3P)5p 2D05/2 → 4s4p4 2P3/2 1076,1083,1086,

1087,1090,1217

915,958,1034,1069

1087,1090,1218

915,958,1034,1069

1087,1090,1219

915,958,963,958,1034,1069

1087,1088,1090,1092,1221

915,943,958,963,1034,1069

1087,1090,1224

915,943,958,1069

Trang 37

915,958,1034,1069

Trang 41

3.2.3.10 Group VII Lasers

Table 3.2.10 Fluorine

Trang 42

873,927,997,1094

1094

857,873,927,997

Trang 43

1285

993,1037

Trang 44

0.521626 0.521630 ±0.000020 1 (2D0)6p 3F2 → (4S0)5d 3D0 1076,1082,1083,

1086,1087,1088,1094,1286

266,993,1037,1042,1105

1086,1087,1088,1090,1094,1287

266,866,867,910,993,1032,1037,1042,1105

266,862,866,911993,1032,1037,1042,1105,1141

1086,1087,1088,1090,1094,1291

266,862,866,911993,1032,1037,1042,1105,1141

1087,1088,

1094, 1292

993,1037,1104,1105

1086–1088,1090,1094,1293

267,862,866,911993,1032,1037,1042,1105,1141

Trang 45

1104

1076,1083,1087,1300

266,866,867,993,1032,1042,1037,1104

1094,1305

993,1032,1037,1104

1087,1094,1310

266,993,1032,1037

1311

993,1037

Trang 47

1054,1078,1087

1464

1054,1078,1087

3.2.3.12 Group VIIIA Lasers

Table 3.2.12 Helium

Trang 48

450,653,907,989

1092,1094,1322

450,454,907,987989,1018,1030,1088,1137,1169

Trang 49

450,454,907,989,1018,1030,1169

1094,1327

450,653,1169,1018,1030

1329

1030,1169,1172

Trang 50

450,653,907,989,985

1094

450,907,989997,1092,1123

1089,1090,1092,1334

450,905,907,985989,997,1088,1092,1172

Trang 51

450,880,888,1005,1096

880,888,907,929965,970,1005,1096,1142

1086,1090,1091,1347

888,965,1005,1096

1091,1349

888,965,1005,1096

Trang 53

450,985,989,1018,1088,1092,

1169

1090,1094,1367

539,985,989,1088,1166

1369

450,974,1092,1143,1169,1172

1370

450,974,1092,1169

1085,1087,1372

978,880,1007,1077,1151

1094,1373

450,861,1007,1077,1116,

1087,1374

941,978,1007,1077,1128,1151

1116,1117

Trang 54

940,941,978,1007,1019,1049,1077,1112,1151

1094,1389

450,933,1007,1116,1117

1391

450,1007,1116,1117

Trang 55

880,1007,1077

Trang 57

653,989,1024,1169

653,874,923,989983,1024,1025,1092,1153

Trang 60

1086,1087

979,1049,1077,1128,1151

Trang 61

450,874,922,923,929,942,983,10241025,1074,1101,1122,1150,1487

Trang 63

Section 3.3 MOLECULAR GAS LASERS

3.3.1 Electronic Transition Gas Lasers

3.3.1.1 Introduction

Molecular gas lasers involving electronic transitions include a wide variety of systems such as the diatomic halogens species, metal halides, CO, H2, N2, alkali dimers, molecular ions, and rare earth complexes Excitation by either electrical discharge or optical means is

by far the most common The former generally delivers the greater power, while the latter has much greater selectivity.

The tables of electronic transition molecular gas lasers are divided into subsections by the increasing number of atoms constituting the molecule: diatomic, triatomic, and poly- atomic Within the tables, the ordering scheme is

1 alphabetical order of the chemical formulae,

2 increasing isotopic mass,

3 increasing band-center wavelength,

4 increasing lower vibrational state energy,

5 increasing transition wavelength within a given vibronic group.

The range of wavelengths of electronic transition molecular gas lasers extends from 109.82 nm (a para-H2 transition) to 8210.2 nm (a N2 transition) The laser wavelengths listed are in air (if in vacuum, wavelengths are in italics) and are followed by the transition assignment The experimental conditions (pumping method, pump energy, and temperature and pressure of lasant and diluent species) and peak output are included in the comments in Section 3.6 References are grouped together in Section 3.7.

Trang 64

Electronic transition molecular gas lasers included in this section are presented in alphabetical order as follows:

Diatomic electronic transition lasers – Table 3.3.1.1 :

Trang 65

3.3.1.2 Diatomic Electronic Transition Lasers

Table 3.3.1.1 Diatomic Electronic Transition Lasers

Trang 66

0.65817 A(O+u) → X(O+

g)(v',v'') = (21,32) P(127)

0.661110 A(O+u) → X(O+

g)(v',v'') = (16,28) P(199)

0.66405 A(O+u) → X(O+

g)(v',v'') = (21,33) R(125)

0.66406 A(O+u) → X(O+

g)(v',v'') = (17,29) R(254)

0.66457 A(O+u) → X(O+

g)(v',v'') = (21,33) P(127)

Trang 67

0.66710 A(O+u) → X(O+

g)(v',v'') = (19,32) P(58)

0.67191 A(O+u) → X(O+

g)(v',v'') = (9,24) R(198)

0.67272 A(O+u) → X(O+

g)(v',v'') = (9,24) P(200)

0.673448 A(O+u) → X(O+

g)(v',v'') = (16,30) R(197)

0.674241 A(O+u) → X(O+

g)(v',v'') = (16,30) P(199)

0.67704 A(O+u) → X(O+

g)(v',v'') = (17,31) R(254)

0.67804 A(O+u) → X(O+

g)(v',v'') = (17,31) P(256)

0.680156 A(O+u) → X(O+

g)(v',v'') = (16,31) R(197)

Trang 68

0.69667 A(O+u) → X(O+

g)(v',v'') = (20,37) R(170)

0.69742 A(O+u) → X(O+

g)(v',v'') = (20,37) P(172)

0.70403 A(O+u) → X(O+

g)(v',v'') = (17,35) R(254)

0.70507 A(O+u) → X(O+

g)(v',v'') = (17,35) P(256)

0.70725 A(O+u) → X(O+

g)(v',v'') = (19,38) R(10)

0.70730 A(O+u) → X(O+

g)(v',v'') = (19,38) P(12)

0.70759 A(O+u) → X(O+

g)(v',v'') = (19,38) R(56)

0.707677 A(O+u) → X(O+

g)(v',v'') = (16,35) R(197)

0.70784 A(O+u) → X(O+

g)(v',v'') = (19,38) P(58)

0.708506 A(O+u) → X(O+

g)(v',v'') = (16,35) P(199)

0.71065 A(O+u) → X(O+

g)(v',v'') = (20,39) R(170)

0.71096 A(O+u) → X(O+

g)(v',v'') = (17,36) R(254)

0.71141 A(O+u) → X(O+

g)(v',v'') = (20,39) P(172)

0.71199 A(O+u) → X(O+

g)(v',v'') = (17,36) P(256)

0.71714 A(O+u) → X(O+

g)(v',v'') = (21,41) R(102)

Trang 69

0.71770 A(O+u) → X(O+

g)(v',v'') = (21,41) R(125)

0.71775 A(O+u) → X(O+

g)(v',v'') = (20,40) R(170)

0.71825 A(O+u) → X(O+

g)(v',v'') = (21,41) P(127)

0.71848 A(O+u) → X(O+

g)(v',v'') = (20,40) P(172)

0.721908 A(O+u) → X(O+

g)(v',v'') = (16,37) R(197)

0.722799 A(O+u) → X(O+

g)(v',v'') = (16,37) P(199)

0.72915 A(O+u) → X(O+

g)(v',v'') = (19,41) R(56)

0.73236 A(O+u) → X(O+

g)(v',v'') = (17,39) R(152)

0.73238 A(O+u) → X(O+

g)(v',v'') = (17,39) R(254)

0.73349 A(O+u) → X(O+

g)(v',v'') = (17,39) P(256)

Trang 70

0.736693 A(O+u) → X(O+

g)(v',v'') = (16,39) R(197)

0.73682 A(O+u) → X(O+

g)(v',v'') = (17,40) P(154)

0.737584 A(O+u) → X(O+

g)(v',v'') = (16,39) P(199)

Trang 72

0.751735 A(O+u) → X(O+

g)(v',v'') = (16,41) R(197)

0.752653 A(O+u) → X(O+

g)(v',v'') = (16,41) P(199)

0.75363 A(O+u) → X(O+

g)(v',v'') = (21,46) R(102)

0.75408 A(O+u) → X(O+

g)(v',v'') = (21,46) P(104)

0.75409 A(O+u) → X(O+

g)(v',v'') = (21,46) R(125)

0.75419 A(O+u) → X(O+

g)(v',v'') = (20,45) R(170)

0.75622 A(O+u) → X(O+

g)(v',v'') = (24,49) R(123)

0.75683 A(O+u) → X(O+

g)(v',v'') = (24,49) P(125)

0.76048 A(O+u) → X(O+

g)(v',v'') = (31,56) R(43)

0.76068 A(O+u) → X(O+

g)(v',v'') = (31,56) P(45)

0.76122 A(O+u) → X(O+

g)(v',v'') = (21,47) R(102)

0.76165 A(O+u) → X(O+

g)(v',v'') = (21,47) R(125)

0.76169 A(O+u) → X(O+

g)(v',v'') = (21,47) P(104)

Trang 73

0.76204 A(O+u) → X(O+

g)(v',v'') = (34,59) R(23)

0.76215 A(O+u) → X(O+

g)(v',v'') = (34,59) P(25)

0.76223 A(O+u) → X(O+

g)(v',v'') = (34,59) R(21)

0.76224 A(O+u) → X(O+

g)(v',v'') = (21,47) P(127)

0.76235 A(O+u) → X(O+

g)(v',v'') = (34,59) P(23)

0.76256 A(O+u) → X(O+

g)(v',v'') = (20,46) P(172)

0.76763 A(O+u) → X(O+

g)(v',v'') = (31,57) R(43)

0.76784 A(O+u) → X(O+

g)(v',v'') = (31,57) P(45)

0.76904 A(O+u) → X(O+

g)(v',v'') = (34,60) R(23)

0.76916 A(O+u) → X(O+

g)(v',v'') = (34,60) P(25)

0.76930 A(O+u) → X(O+

g)(v',v'') = (34,60) R(21)

0.76941 A(O+u) → X(O+

g)(v',v'') = (34,60) P(23)

0.77486 A(O+u) → X(O+

g)(v',v'') = (31,58) R(43)

0.77506 A(O+u) → X(O+

g)(v',v'') = (31,58) P(45)

0.77612 A(O+u) → X(O+

g)(v',v'') = (34,61) R(23)

0.77624 A(O+u) → X(O+

g)(v',v'') = (34,61) P(25)

0.77635 A(O+u) → X(O+

g)(v',v'') = (34,61) R(21)

0.77647 A(O+u) → X(O+

g)(v',v'') = (34,61) P(23)

Trang 74

0.78237 A(O+u) → X(O+

g)(v',v'') = (31,59) P(45)

0.78330 A(O+u) → X(O+

g)(v',v'') = (34,62) R(23)

0.78342 A(O+u) → X(O+

g)(v',v'') = (34,62) P(25)

Trang 84

0.617730 B3Π2u → X1Σ+

g(35-13) R(107)

0.617900 B3Π2u → X1Σ+

g(33-13) R(58)

0.617970 B3Π2u → X1Σ+

g(34-13) R(89)

0.617990 B3Π2u → X1Σ+

g(34-13) P(86)

0.618245 B3Π2u → X1Σ+

g(33-13) P(60)

0.618325 B3Π2u → X1Σ+

g(35-13) P(109)

0.618490 B3Π2u → X1Σ+

g(34-13) P(91)

0.618580 B3Π2u → X1Σ+

g(33-13) P(65)

Trang 86

1.1214 B3Π2u → X1Σ+

g(11-44) P(42)

1.1216 B3Π2u → X1Σ+

g(11-44) R(58)

1.1226 B3Π2u → X1Σ+

g(11-44) P(60)

1.1334 B3Π2u → X1Σ+

g(13-46) R(84)

1.1347 B3Π2u → X1Σ+

g(12-45) P(129)

1.1348 B3Π2u → X1Σ+

g(13-46) P(86)

1.1464 B3Π2u → X1Σ+

g(12-46) P(63)

1.1502 B3Π2u → X1Σ+

g(13-47) P(57)

1.1510 B3Π2u → X1Σ+

g(13-47) R(57)

1.1515 B3Π2u → X1Σ+

g(13-47) P(82)

1.1522 B3Π2u → X1Σ+

g(13-47) R(75)

1.1529 B3Π2u → X1Σ+

g(13-47) R(82)

1.1698 B3Π2u → X1Σ+

g(13-48) P(75)

Trang 87

1.1711 B3Π2u → X1Σ+

g(13-48) R(75)

1.1718 B3Π2u → X1Σ+

g(13-48) R(82)

1.1740 B3Π2u → X1Σ+

g(14-49) P(62)

1.1750 B3Π2u → X1Σ+

g(14-49) R(63)

1.2170 B3Π2u → X1Σ+

gP(71), R(71)

1.2740 B3Π2u → X1Σ+

gP(76), R(76)

1.3010 B3Π2u → X1Σ+

g(27-66) P(66)

1.3020 B3Π2u → X1Σ+

g(27-66) R(66)

1.3040 B3Π2u → X1Σ+

gP(79), R(79)

1.3069 B3Π2u → X1Σ+

g(29-68) P(64)

1.3080 B3Π2u → X1Σ+

g(26-68) R(64)

Trang 88

1.3406 B3Π2u → X1Σ+

g(42-82) P(57)

1.3418 B3Π2u → X1Σ+

g(42-82) R(57)

1.3421 B3Π2u → X1Σ+

g(45-85) P(83)(44-84) P(75)(43-83) R(53)

1.3429 B3Π2u → X1Σ+

g(45-85) R(74)(45-85) R(72)(44-84) R(62)

Trang 89

0.62541 B3Π(0+) → X1Σ+

(v',v'') = (0,5) R(23)

6680,6683,6686,6689

1569

0.62546 B3Π(0+) → X1Σ+

(v',v'') = (0,5) R(22)

6680,6683,66866689,6692

1569

0.62546 B3Π(0+) → X1Σ+

(v',v'') = (0,5) R(23)

6680,6683,66866689,6692

1569

0.62639 B3Π(0+) → X1Σ+

(v',v'') = (0,5) P(25)

6683,6686,6692

1569

0.62645 B3Π(0+) → X1Σ+

(v',v'') = (0,5) P(24)

6680,6686,6689

1569

0.62645 B3Π(0+) → X1Σ+

(v',v'') = (0,5) P(25)

6680,6686,6689

1569

0.62651 B3Π(0+) → X1Σ+

(v',v'') = (0,5) P(25)

Trang 94

(0,41) → (4,40)

0.5263 B1Πu → S1Σ+

g(4,11) → (7,11)

0.5269 B1Πu → S1Σ+

g(0,41) → (4,42)

0.5358 B1Πu → S1Σ+

g(4,11) → (8,11)

0.5362 B1Πu → S1Σ+

g(0,41) → (5,42)

0.5417 B1Πu → S1Σ+

g(7,8) → (11,8)

0.5424 B1Πu → S1Σ+

g(0,41) → (6,40)

0.5446 B1Πu → S1Σ^+

g(5,41) → (9,42)

0.5451 B1Πu → S1Σ+

g(4,11) → (9,11)

0.5459 B1Πu → S1Σ+

g(0,41) → (6,42)

0.5528 B1Πu → S1Σ+

g(5,41) → (10,42)

0.5599 B1Πu → S1Σ+

g(7,8) → (13,8)

Trang 95

0.5689 B1Πu → S1Σ+

g(7,8) → (14,8)

0.5755 B1Πu → S1Σ+

g}(4,31) → (16,31)

0.5773 B1Πu → S1Σ+

g(11,22) → (18,21)

0.5787 B1Πu → S1Σ+

g(11,29) → (18,28)

0.5867 B1Πu → S1Σ+

g(11,29) → (19,28)

0.5889 B1Πu → S1Σ+

g(11,29) → (19,30)

(0-0) Band R3(6)

110,1110.3365537 C3Πu → B3Πg

(0-0) Band R1(6)

110,1110.3366156 C3Πu → B3Πg

(0-0) Band R1(4)

110,1110.3366211 C3Πu → B3Πg

(0-0) Band R3(5)

110,1110.3366682 C3Πu → B3Πg

(0-0) Band R1(4)

110,1110.3366911 C3Πu → B3Πg

(0-0) Band R3(4)

110,1110.3367218 C3Πu → B3Πg

(0-0) Band R1(3)

110,1110.3368432 C3Πu → B3Πg

(0-0) Band P'3(20)

110,1110.3368917 C3Πu → B3Πg

(0-0) Band P3(19)

110,111

Trang 96

(0-0) Band P'3(18)

110,1110.3369502 C3Πu → B3Πg

(0-0) Band P'2(18)

110,1110.3369542 C3Πu → B3Πg

(0-0) Band Q3(2)

110,1110.3369555 C3Πu → B3Πg

(0-0) Band P'2(2)

110,1110.3369575 C3Πu → B3Πg

(0-0) Band P'1(18)

110,1110.3369760 C3Πu → B3Πg

(0-0) Band P3(17)

110,1110.3369838 C3Πu → B3Πg

(0-0) Band P1(3)

110,1110.3369852 C3Πu → B3Πg

(0-0) Band P2(17)

110,1110.3370081 C3Πu → B3Πg

(0-0) Band P'1(4)

110,1110.3370121 C3Πu → B3Πg

(0-0) Band P'3(16)

110,1110.3370138 C3Πu → B3Πg

(0-0) Band P'1(16)

110,1110.3370161 C3Πu → B3Πg

(0-0) Band P1(16)

110,1110.3370169 C3Πu → B3Πg

(0-0) Band P'2(16)

110,1110.3370297 C3Πu → B3Πg

(0-0) Band P1(5)

110,1110.3370316 C3Πu → B3Πg

(0-0) Band P2(3)

110,1110.3370360 C3Πu → B3Πg

(0-0) Band P'1(15)

110,1110.3370374 C3Πu → B3Πg

(0-0) Band P1(15)

110,1110.3370434 C3Πu → B3Πg

(0-0) Band P2(15),P3(15)

110,111

Ngày đăng: 14/08/2014, 04:21

TỪ KHÓA LIÊN QUAN