1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Materials Science and Engineering - Electronic and Mechanical Properties of Materials Part 8 pdf

10 353 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 335,59 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

3.225 21Dispersion • Dispersion can be defined a couple of ways same, just different way – when the group velocity ceases to be equal to the phase velocity – when the dielectric constant

Trang 1

3.225 17

• Usually Clausius-Mosotti necessary due to high density of dipoles

Ionic Polarizability

(  

− + +

=

= +

2

3

1 3

2

1

ω

ω α

α ε

ε

α

ε

ε

oi o

o tot

r

r

M

e

v

N

By convention, things are abbreviated by using εs and ε∞:

(  

 + +

= +

<< + − 2 2

3

1

2

1

,

oi o

s

s

oi

M

e

v α α ω ε

ε

ε

ω

ω

[ + −

+

= +

>> α α

ε

ε

ε

ω

ω

v

n

n

o

oi

3

1

2

1

2

1

, 2

2





 +

+

=

− +

=

2

2 ,

1

2

2

2

2

s oi

T

T

s

r

ε

ε ω

ω

ω

ω

ε ε

ε

ε

εr

ω

ωT

n2=ε∞

εs

© E Fitzgerald-1999

)

)

]

Orientational Polarizability

• No restoring force: analogous to conductivity

H

H

O

p +

-C

p=0

+q -q

θ

For a group of many molecules at some temperature:

T

k

pE T

k

U b

b e e

f

θ cos

=

=

After averaging over the polarization of the ensemble molecules (valid for low E-fields):

T

k

p

b

DC

3

~

2

α

Analogous to conductivity, the

molecules collide after a certain

time t, giving:

ωτ

α

α

i

DC

o = 1 −

Trang 2

Dielectric Loss

© E Fitzgerald-1999

• For convenience, imagine a low density of molecules in the gas phase

• There will be only electronic and orientational polarizability

ωτ

ε

ε

ε

α ε

ε

ωτ

ωτ ε α χ

χ

ε

i

n

n

N n i N n

so

r

o DC so

r

o DC o

e

r

+

=

+

=

=

<<

− +

=

+

+

=

1

3

,

,

1

) 1 ( 3 1

2

2

2 2

We can write this in terms of a

real and imaginary dielectric

constant if we choose:

ωτ τ ω

ε ε

τ

ω

ε

ε

ε

ε

ε

2 2

2 so 2

2

2

2

1 ''

;

1

'

''

'

+

= +

+

=

+

=

n n

n

i

so

r

Water molecule: τ=9.5x10-11sec, ω~1010

microwave oven, transmission of E-M waves

log ωτ

ε ’ , ε ’’

n2

εso αe+ αi

αe

Dielectric Constant vs Frequency

• Completely general ε due to the localized charge in materials

ω

ε

1

n2

αo

αi

αe

molecules

ions

electrons

Dispersion-free regions, vg=vp

© E Fitzgerald-1999

Trang 3

3.225 21

Dispersion

• Dispersion can be defined a couple of ways (same, just different way)

– when the group velocity ceases to be equal to the phase velocity

– when the dielectric constant has a frequency dependence (i.e when dε/dωnot 0)

k

Dispersion

k c

r

ε

ω =

g r

k

c k

=

=

ε ω

g r

k

c k

=

ω ε

ω

) (

© E Fitzgerald-1999

Trang 4

Spontaneous Polarization

Remember form of orientational polarization:

kT

C kT

p

or= = 3

2 α

With C ≡Curie constant Define a critical temperature Tcby

k

NC

Tc

0

=

Noting further

Thus

© H.L Tuller, 2001

or

0 3ε

αor

c N T

T =

Fig 1 The Curie-Weiss law illustrated for (Ba,Sr)TiO3 From L.L Hench and J.K West, Principles of Electronic Ceramics, Wiley, 1990, p 243.

1 3

3 0 = 0 =

c

kT C N N

ε ε α

c

c

T T

T

χ

• Each unit cell a dipole!

• Large PR(remnant polarization, P(E=0)

• Coercive Field EC, electric field required to bring P back to zero.

Ferroelectrics

E

R

Ro

large enough reverse E-field to get over barrier

E

P

‘normal’ dielectric

Ps

Ec

PR

© E Fitzgerald-1999

Trang 5

3.225 3

Ferroelectrics

• ‘Confused’ atom structure creates metastable relative positions of

positive and negative ions

© E Fitzgerald-1999

Ferroelectrics

Applications

• Capacitors

• Non-volatile memories

• Photorefractive materials

Trang 6

Characteristics of Optical Fiber

• Snell’s Law

n1

n2

θ1

θ2 Refraction

Boundary conditions for E-M wave gives Snell’s Law:

2 2 1

1sinθ n sinθ

n2

n1

θ1

θ2

Internal Reflection: θ 1 =90°

2 1 1

n

n

c

=

= θ θ

Glass/air, θc=42°

© E Fitzgerald-1999

• Attenuation

– Absorption

• OH- dominant, SiO2tetrahedral mode

– Scattering

• Raleigh scattering (density fluctuations) αR~const./ λ4(<0.8 µ m

not very useful!)

• Dispersion

– material dispersion (see slide i13)

– modal dispersion

Characteristics of Optical Fiber

x

• Light source always has ∆λ

• parts of pulse with different l propagate

at different speeds Black wave arrives later than red wave

Solution: grade index

y

n

n2

n1

© E Fitzgerald-1999

Trang 7

3.225 7

Characteristics of Optical Fiber

© E Fitzgerald-1999

Characteristics of Optical Fiber

Trang 8

3.225 9

Colors Produced by Chromium

Above: alexandrite, emerald, and ruby

Center: carbonate, chloride, oxide

Below: potassium chromate and ammonium dichromate

© H.L Tuller, 2001

Electron distribution in the ground state of a chromium atom (A) and a trivalent chromium ion (B)

Chromium Electronic Structure

© H.L Tuller, 2001

Trang 9

3.225 11

Interaction of the d orbitals of a central ion with six ligands in

an octahedral arrangement

Octahedral Environment of Transition Metal Ion

© H.L Tuller, 2001

The splitting of the five 3d orbitals in a tetrahedral and an octahedral ligand field

Note: hen the element is a mid-gap dopant, transitions within this element lead to absorption and/or emission via luminescence

Crystal Field Splitting

W

Trang 10

3.225 13

Optical Transitions in Ruby

Optical absorption spectrum tied to Cr transitions in ruby

© H.L Tuller, 2001

Optical Transitions in Emerald

Optical absorption spectrum tied to Cr transitions in emerald

© H.L Tuller, 2001

Ngày đăng: 11/08/2014, 14:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm