Tuller-2001 9Sensor Configuration A single 9 mm2 chip sensor array with: • four sensing elements with interdigitated structure electrodes • heater • temperature sensor Schematic Cros
Trang 13.225 © H.L Tuller-2001 7
1E-5
1E-4
1E-3
0,01
0,1
T = 850°C
X=0.03
X=0.03
Sr1-xLaxTiO3 porous ceramic
t / h
Transient Behavior of Porous Sr1-xLaxTiO3for x=0.005 and x=0.03
T = 850 °C
Mechanisms in Semiconducting Gas Sensor
• Interface - Gas adsorption
Induce space charge barrier
1 Surface conduction
2 Grain boundary barrier
Grain boundary barrier
modulate
2
=
Trang 23.225 © H.L Tuller-2001 9
Sensor Configuration
A single 9 mm2 chip sensor array with:
• four sensing elements with interdigitated structure electrodes
• heater
• temperature sensor
Schematic Cross Section of Mounted Sensor
Trang 33.225 © H.L Tuller-2001 11
• ZnO film (150 nm)
• Electrode: Pt(200 nm)/Ta(25 nm) film
• Insulation layer: SiO2 layer (1 µm)
• Substrate: Si wafer
Si wafer ZnO film
H2
H2 H2 H2
Pt electrode
SiO2 layer
Electrical Measurement
-10 0 10 30 50 70 90 100
-10 0 10 30 50 70 90 100
MFC2 Temp NO2 NH3 Feuchte CO NO2kl H2
time / h
100k
Temp:360C, H 2 , CO, NH 3 (10, 50 and 100 ppm), NO 2 (0.2, 0.4, and 2 ppm)
ZnO(Ar:O2=7:3) 1
[ Pfad: \ alpha missy Messungen messplatz_1 ] M Jägle / 27.02.2001
S1219a S1219c
M 9710746 20V Datum: 23.02.2001 - 27.02.2001 Steuerdatei: allgas_h2.stg Meßprotokoll: 273
Schematic of Gas Sensor Structure
MicroElectroMechanical Systems - MEMS
Micromachining - Application of microfabrication tools, e.g lithography, thin
film deposition, etching (dry, wet), bonding
Bulk Micromachining Surface Micromachining
Resp
Trang 43.225 © H.L Tuller-2001 13
Gas Sensors and MEMS
• Miniaturization
• Reduced power consumption
• Improved sensitivity
• Decreased response time
• Reduced cost
• Arrays
• Improved selectivity
• Integration
• Smart sensors
Microhotplate
Trang 53.225 © H.L Tuller-2001 15
Microhotplate Sensor Platform
NIST Microhotplate Design
Microhotplate Characteristics
• Milli-second thermal rise and fall times
programmed thermal cycling low duty cycle
• Low thermal mass
low power dissipation
• Arrays
enhanced selectivity
Trang 63.225 © H.L Tuller-2001 17
Harsh Environment MEMS
• Oxidation resistant
• Chemically inert
• Abrasion resistant
Wide band gap semiconductor/insulator
Photo Electro-chemical Etching - PEC
• materials versatility e.g Si, SiC, Ge, GaAs, GaN, etc
• precise dimensional control down to 0.1 mm
through the use of highly selective p-n junction
etch-stops
• fabrication of structures with negligible internal stresses
• fabrication of structures not constrained by
specific crystallographic orientations
Features:
Trang 73.225 © H.L Tuller-2001 19
+
-+
h +
h +
semiconductor
Photo Electro-chemical Etching - PEC
• Electro-chemical
etching
p-type
+
-Light source
• Photo electro
chemical etching
+
-h +
semiconductor
electrolyte
Light source
n-type
Examples
• Arrays of stress free
4.2 µm thick cantilever
beams
• Photoelectrochemically
micromachined cantilevers
are not constrained to
specific crystal planes or
directions
• Similar structures
successfully
micromachined from SiC
by Boston MicroSystems
personnel
Trang 83.225 © H.L Tuller-2001 21
Smart Gas Sensor
A Self Activated Microcantilever-based Gas Sensor
1 A device capable of sensing a change in environment and
responding without need for a microprocessor
2 A device has both gas sensing and actuating function by
integration of semiconducting oxide and piezoelectric thin films
Micro-Processor
Actuator
Sensor
Chemical
Environment
Microfluidic structure
Smart Gas Sensor
1 Semiconducting oxide thin films for high gas sensitivity
: Microstructure (Nano-Structure) and Composition
2 Piezoelectric thin films for providing actuating function
3 Thin film electroceramic deposition methods for integrating with silicon microcantilever beam
: Compatibility with Si micromachining technology
4 Microcantilever structures for the self activated gas
: High performance in chemical environment
sensor
Trang 93.225 © H.L Tuller-2001 23
Resonant Gas Sensor
• Resonant Frequency: f R = 1/2l (µo /ρo ) 1/2
where l = resonator thickness, µo = effective shear modulus and ρo = density
• Mass change causes shift in resonant frequency : (m 0 - ∆ m) / m o
Gas Sensor elements :
- stoichiometry change translates into mass change
(II) Resonator transduces mass change into resonance frequency change
∆f
∆m
Electrode
Electrode
Resonator Active layer
Choice of Piezoelectric Materials
• Temperature limitations of piezoelectric materials
Temperature ( o C)
Limitations
Quartz 450 High loss
LiNbO 3 300 Decomposition
Li 2 B 4 O 7 500 Phase transformation
GaPO 4 933 ? Phase transformation
La 2 Ga 5 SiO 4
(Langasite)
1470 ? Melting point
Trang 103.225 © H.L Tuller-2001 25
Design Considerations
→ contributes to resonator electrical losses
Modify bulk conductivity - how?
→ limited oxygen non-stoichiometry
→ slow oxygen diffusion kinetics
Defect chemistry and diffusion kinetics study
• f R (T): Temperature dependence of resonant frequency
→ need to differentiate from mass dependence
Minimize @ intrinsic and device-levels
Langasite : Bulk Electrical Properties
• Single activation energy in the temperature range 500
-900 °C
8 9 10 11 12 13
10 -7
10 -6
10 -5
10 -4
Y-cut
σ0 = 2.1 S cm -1
EA = 105 kJ mol -1
10 4
/T [1/K]
-1 ]
900 800 700 600 500
T [°C]