1. Trang chủ
  2. » Giáo Dục - Đào Tạo

LUYỆN THI ĐẠI HỌC TÍCH PHÂN ppsx

3 276 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 834,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

LT ĐH

TÍCH

PHÂN

1/ ∫cos xdx

2/ dx2

+ .

3/I=∫cos x.sin 8x3 dx

4/I =

π

π

4

3tg x dx

5/I =

π

π

6

(2cotg x 5) dx

6/I =

π

2

0

1 cos x

dx

1 cos x

∫ −

+

7/ I =

π

2

0 ∫ sin2 x.cos2xdx

8/I =

π

3

0

∫ (2cos2 x-3sin2 x)dx

9 / I =

π

2

π

2

π

sin( x)

π

sin( x)

4

+

10 / I =

π

3

π

6

− (tgx-cotgx)2 dx

11/ I =

π

0 ∫cos x dx

12 / I =

π

0sin x dx

13*/ I =

π

3

2

π

3

sin x sin xcot gx dx

sin x

14/I =

π

0 ∫sin x dx

15/I =

π

3

4

1

sin cos

16/I =

π

4

π

6

∫ cotg2x dx

17/I =

π

2

2 sin x

π

4

e sin 2x dx

18/ I =

π

tgx 2

4

2 0

e

cos x

+

19/ I =

π

2

4

π

4

1

sin x

∫ dx20/ I =

π

4

6

0

1

cos x

∫ dx

21/I =

π

0 ∫cos 2x(sin x cos x)dx+ 22/ I =

π

0 ∫cos xdx 23/ I =

π 3 2 0

4sin x dx

1 cosx

+ 24/ I = 1 3 2

0 ∫x 1 x dx−

25/I =1 5 2

0 ∫x 1 x dx+

26/I =1

0

x dx 2x 1

+

27/I =1 x

0

1 dx

+

28/I =2 x

1

1 dx

1 e

∫ −

29/I =2 x2x

0

e dx

+

30/I =1 xx

0

e dx

∫ − +

31/I =e1 2

ln x dx x(ln x 1)

+

32/I =

7 3 3

x 1 dx 3x 1

∫ + +

33/I =2 3 2

0(x 3) x 6x 8 dx

34/I = 1 2 2

3

1 dx

35/I =42 1 2dx

x 16 x

36*/I = 6 2

2 3

1 dx

37/I = 2 2 2

1x 4 x dx

38/I =2 2 3

0x (x 4) dx

39/I =

2 4

4 3 3

x 4dx x

40*/I = 2 22

2

dx

+ +

41/I =ln 2 x

42/I =1

0

1 dx

3 2x

43/I =

π

0 ∫sin xdx

44*/I =

π 3 0

1 dx cos x

45/I =1 x2x

0

e dx

∫ − +

46/I =ln 30 x1 dx

+

47/I =

π 4 2 π 6

sin x cot gx

48/I =e 3 2

1

ln x 2 ln xdx x

49/I =e

1

sin(ln x) dx x

50/I =1 3 4 5

0 ∫x (x −1) dx

0 ∫(1 2x)(1 3x 3x ) dx+ + + 52/I =21 1 3dx

x 1 x

+

53/I =

π

π 6

tg x cot g x 2dx

54/I =1 2 3

0 ∫ (1 x ) dx−

55*/I =1 2x

0

1 dx

+

56/I =

x

ln 3

0

e dx (e 1)

+

57/I = 0 2x 3

1x(e x 1)dx

58/I =

π

0 ∫ 1 cos x sin x.cos xdx−

59*/I =2 3 2

5

1 dx

+

60/I =

π 4 0

1 cos 2x

+

61/I =ln 5 x2x

ln 2

62/I =e 2

1

x 1.ln xdx x

∫ +

63/I =1 2

0

x dx (x 1) x 1

+ +

64/I =

π 2

0 ∫sin x.sin 2x.sin 3xdx

65/I =

π

0 ∫cos 2x(sin x cos x)dx+

66*/I =

π

0 ∫( cos x− sin x )dx

67/I =3 87 4

2

x dx

+ −

68*/I =

π 2 0

4cos x 3sin x 1dx 4sin x 3cos x 5

+ +

69/I =9 3

1 ∫x 1 xdx−

70/I =23x 1 dx

3x 2

∫ + +

71*/I =π 6 0

x sin dx 2

72*/I =2

0

x dx

+ + −

73/I = 3 3 2

0 ∫ x 1 x dx+

74**/I =10 2

ln(1 x) dx

∫ + +

75/I =

π 2 0

sin x dx sin x cos x

+

76/I =eπ

1 cos(ln x)dx

77*/I =2 2

0 ∫ 4 x dx+

78/I =2

1

x dx

+ −

79/I =e

1

1 3ln x ln xdx x

∫ +

80/I =3 2

81/I =e 2

1 ∫(ln x) dx

82/I =e2

e

ln xdx x

83/I =e2

1

ln x dx

ln x

84/I =2 2 1

x ln(x 1)dx

85/I = 3 2 3

1 dx

+

86/I =10 1 2dx

4 x

87/I =

2 4

0 ∫ sin xdx

88/I =

π 3 2 π 6

ln(sin x) dx cos x

89/I =2

1 ∫cos(ln x)dx

90*/I =2 2

0 ∫ln( 1 x+ −x)dx

91*/I = 3 2

2

1 dx

92/I = 3

1

x 1dx x

∫ +

93/I =3 2 3

1

x 16

94/I =

π 6

2 0

cos x

dx

6 5sin x sin x

− +

95*/I =e2 2

e

ln x

ln x

96/I = 3 2

− −

97/I =2 3 2

1x 2x x 2 dx

98/I =

3π 4 π 4

cos 2x 1dx

99/I =π

0 ∫cos x sin xdx

100/I =2π

0 ∫ 1 sin xdx+

101/I =

3π 4 π 4

sin 2x dx

102/I =π

0 ∫ 1 sin xdx−

1 ln(x x 1) dx

 + + 

 

 

104*/I =π 2

0

x sin x dx

1 cos x

+

105*/I =11 2 x

1 dx (x 1)(4 1)

106*/I =1 4x

1

x dx

1 2

− +

107/I =

2 4

0 ∫ x sin xdx

108/I =

2 4

0 ∫ x cos xdx

109/I =

π

0 ∫x.sin x cos xdx

110*/I =1 2 x2

0

x e dx (x 2)

+

111/I =π 2x 2

0 ∫e sin xdx

112/I =2 2

1

1

x ln(1 )dx x

113/I =

e 2 1 e

ln x dx (x 1)

+

114/I =

1 2 0

1 x

1 x

115/I =t 2

1

ln x

x

∫  ⇒ <

 ÷

 

116/I =

π 3 0 sin x.ln(cos x)dx

117/I =

π 2

1 ∫ cos (ln x)dx

118/I =

π 4 0

1 dx cos x

119*/I =

π 4 3 0

1 dx cos x

120/I =1 3 x2

0 ∫x e dx

121/I =

π 2

0 ∫e sin x cos xdx

122/I =

π 2 4 0

sin 2x dx

1 cos x

+

123/I =10 2

− −

124/I =21 2

− +

125/I =15 2

126/I =1

0

2x 9dx

x 3

∫ + +

127/I =41 2

x (x 1)

+

128*/I =

0

2 π

2

sin 2x dx (2 sin x)

− +

129/I =10 2

(x 1)(x 3x 2)

+ + +

130/I =1 3 0

4x dx (x 1)

+

131/I =10 4 2

+ +

132/I =

π 3 3 2 0

sin x dx (sin x 3)

+

133/I =

π 3 3 π 6

4sin x dx

1 cos x

134/I =

π 3 2 π 6

1 dx cos x.sin x

135/I =

π 3

0 ∫sin x.tgxdx

136/I =

π 3 π 4

1 dx sin 2x

137/I =

π

3 4

0

(tg x 1) cos x

+

138/I =

π 3

π 3

sin x 9 cos x

1

Trang 2

139/I =

π

2

π

2

cos x 1dx

cos x 2

+

140/I =

π

2

0

1 sin x dx

1 3cos x

∫ +

+

141/I =

π

2

0

cos x

dx sin x cos x 1

+ +

142/I = 41 2

1

dx

x (x 1)

+

144/I =

π

3

3

0

sin x

dx

cos x

145/I =1

0 ∫x 1 xdx−

146/I =6

4

x 4. 1 dx

x 2 x 2

∫ −

+ +

147/I = 01 2 1 dx

148/I =31 1 2dx

4x x

149/I = 2 2

150/I = 22 22x 5 dx

+ +

151/I =10 1 xdx

3 e

+

152/I =

1

2

2x

0

dx

1 e

+

7

1

dx

x 9 x

+

154/I =

π

0 ∫e sin xdx

155/I =

π

4

2

0

cos x

dx cos x sin x

+

156/I =1

0

3

dx

+ −

157/I = π

0 ∫x sin xdx

158/I =π 2 2

0 ∫x cos xdx

159/I =1

0 ∫cos x dx

160/I =1

0 ∫sin x dx

161/I =

2

4

0 ∫ x sin x dx

162/I =

2

π

4

0 ∫ x cos x dx

163/I =π 2

0 ∫x cos x sin x dx

164/I =

π

0 ∫x cos x sin x dx

165/I =4 x

166/I =

π

4 3x

0 ∫e sin 4x dx

167/I =π 2x 2

0 ∫e sin x dx

168/I =1 2 x2

0

x e dx (x 2)

+

169/I =e

1 (1 x) ln x dx

∫ +

170/I =e 2

1 ∫x ln x dx

171/I =

1

1 ∫ln x dx

172/I =e

1 x(2 ln x) dx

∫ −

173/I =e2 2

e

ln x

ln x

174/I =2 2

1 ∫(x +x) ln x dx

175/I =2 2

1

1

x ln(1 ) dx x

176/I =2 5

1

ln x dx x

177/I =

e 2 1 e

ln x dx (x 1)

+

178/I =

1 2 0

1 x

1 x

179/I =

π 2 π 3

cos x.ln(1 cos x) dx

180/

π 2

0

e sin x cos x dx

181/I=

π 2 4 0

sin 2x dx

1 sin x

+

182/I =

π 2 4 0

sin 2x dx

1 cos x

+

183/I =2 2 1

− +

184/I =1 2

0

x 3x 2dx

x 3

∫ + + +

185/I =41 2

x (x 1)

+

186/I =1 2

0

ln(1 x) dx

∫ + +

187/I1 64

0

1 x dx

1 x

∫ + +

188/I =1 15 8

0 ∫x 1 x dx+

189/I =1 x x x

0

+

190/I=

e 1 e

ln x dx

191/I =

π

0 ∫(e +cos x) cos x dx

192/I =

π 2 0

sin 2x.cos x

dx

1 cos x

+

193/I =

π 2 0

sin 2x sin xdx

1 3cos x

+

194/I =

π 2 4 0

1 2sin x

dx

1 sin 2x

∫ − +

195/I = 3 5 2 3

0

dx

∫ + +

196/I =

π 3

2 π

4

cos x 1 cos x

+

197/I =2 2

1

x 1

x 2

− +

198/I =

π

0 ∫x.tg x dx

199/I =5

3( x 2 x 2 ) dx

− + − −

200/I =4

1

2 dx

x 5 4

− + +

201/I =2

1

x dx

+ + −

202/I =2 2

1

ln(1 x) dx x

∫ +

203/I =

π 2 0

sin 2x dx

1 cos x

+

204/I =

π 2008 2

0

dx

+

205/I =

π 2 0 sin x.ln(1 cos x) dx

206/I = 3 22

1

dx x

207/I =

π 3 4 2 0

sin xdx cos x

208/I =

π

0 ∫cos x.cos 4x dx

209/I =1 2x x

0

1 dx

+

210/I =

e 2 1 e

ln x dx (x 1)

+

211/I =1

0

+ +

212/I =1 22

0

4 x

213/I =1 2 0

x dx

4 x

214/I =

1 4 2 2 0

x dx

215/I =

π 2 0

sin 3x dx cos x 1

+

216/I =

2 2 2 2 0

x dx

1 x

217/I =2 24

1

1 x dx

1 x

∫ − +

218/I = 73 3 2

0

x dx

1 x

+

219/I =ln 2 xx

0

1 e dx

1 e

∫ − +

220/I =1

0 ∫x 1 x dx−

221/I =1 2

222/I =

π

0 (cos x sin x) dx

223/I =3 2

0

x 1dx

x 1

∫ + +

224/I =1 2 2x 0

(1 x) e dx

∫ +

225/I =

π 2 2 0

cos x dx cos x 1

+

226/I =

7 3 3

x 1 dx 3x 1

∫ + +

227/I =

π 2 π 6

1 sin 2x cos 2x

dx cos x sin x

+

228/I =1 x 22x

0

(1 e ) dx

1 e

∫ + +

229/I =3 2 3 0

x (1 x) dx

∫ −

230/I =

π 3 2 2 0

sin x.cos x

dx cos x 1

+

231/I =

1 2 2 0

4x 1 dx

− +

0

x sin x.cos xdx

233/I =

π 2 0

cos x dx cos 2x 7

+

234/I =41 2

1 dx

x (x 1)

+

235/I =

π

0 ∫ sin 2x(1 sin x) dx+

236/I =23x 1 dx

3x 2

∫ + +

237/I = 4 2

7

1 dx

+

238/I =π 3 4

0 ∫x sin x cos xdx

239/I =

π

π 2

cos x cos x cos xdx

240*/I =1 2

1ln( x a x)dx

241/I =

π 2

x 0

1 sin x dx (1 cos x)e

∫ − +

242/I =

π 2 0

sin 2x sin x

dx cos3x 1

+

243/I =

π 4

0

sin 2x dx sin x 2 cos x

+

244/I =

2 3 2 2 0

x dx

1 x

245/I =

2 3 2 2 0

1 x

246/I =

2 1 2 2 2

1 x dx x

∫ −

247/I =1 2 2

0

4 x

248/I =

2 2 2 3

1 dx

249/I =1 5 3 6

0 ∫x (1 x ) dx−

250/I =

π 2 0

sin x dx

1 sin x

+

251/I =

π 2 0

cos x dx

7 cos 2x

+

252/I =41 2

1 dx (1 x)x

+

253/I =23x 1 dx

3x 2

∫ + +

254*/I =

π 3 π 4

cos x sin xdx

3 sin 2x

+

255/I =

π

π 2

cos x cos x cos xdx

256/I =

π

π 4

tg xdx

257*/I =

π

0

1 sin x

e dx

1 cos x

∫ + +

258/I =1 2 3

0 ∫ (1 x ) dx−

259/I =

π

0 ∫x.tg xdx

260/I=20 2 2

(4 x )

+

261/I = 1 32

0

3x dx

+

262*/I = 2 55

1

1 x dx x(1 x )

∫ − +

263/I =

π 3 2 0

cos x dx

1 sin x

264/I =

π 2 3 6 0

sin xdx cos x

265/I =

π

3 6

0

sin x sin x

dx cos 2x

266/I = 13 6 2

x (1 x )

+

267/I =

π 2 2 0

sin x dx cos x 3

+

268/I = 2

0

sin xdx x

269/I =

π

0 ∫sin x cos x(1 cos x) dx+

270/I =

π

4 0

sin x cos xdx sin x cos x 1

+ +

271/I =

π

4 0

sin x cos x

dx sin x cos x 1

+ +

272/I =

π 2 0

sin x cos x cos xdx sin x 2

+

273/I =

1 x 1 3 a

e dx x

274/I =1 3 2 2

0

dx

+ +

275/I =1 23 3

0

x dx (x 1)

+

276/I =10 3

3 dx

+

277*/I =1 46

0

x 1dx

∫ + +

278/I =10 3

(2x 1)

+

279/I =7

2

2 x 1

+ +

2

Trang 3

280/I =

3

2

2

1

2

x 1 x

0

x ln(x 1 x )dx

1 x

+

282/I =4 2

1

(x 1) ln x dx

∫ −

283/I =3 2

0 ∫x ln(x 1) dx+

284/I =2 2 3

1

3x

dx

+ +

285/I =1 3 2

0

4x 1

dx

+ + +

286/I =

1

2

2 1

2

1

dx (3 2x) 5 12x 4x

287/I =1

0

+ +

288/I =

π

2

0

cos x

dx

2 cos 2x

+

289/I =

π

2

π

4

cos x sin xdx

3 sin 2x

+

290/I =

π

0 ∫(cos x sin x)dx+

291/I =

π

0 ∫cos x sin xdx

292/I =

π

0 ∫cos 2x(sin x cos x)dx+

293/I =

π

2

0

2 sin x

+

294/I =

π

2

0

1

dx

2 cos x

295/I =

2

2

2

3

296/I = 73 3 2

0

1 x

+

297*/I =12 1 3dx

x 1 x

+

298/I =1 3 2

0

+ +

299/I =11 1 2dx

− + + +

300/I =

π

3

4

π

6

1

dx sin x cos x

301/I =

π

2

0

cos x

dx

cos x 1

+

302/I =

π

2

0

cos x dx

2 cos x

303/I =

π

2

0

sin x

dx

sin x 2

+

304/I =

π

3

2

0

cos x dx

cos x 1

+

305/I =

π

2

0

1

dx

2 cos x sin x 3

+ +

306/I = 2π 2

3

cos x dx (1 cos x)

307/I =

π

0

tg x dx

308*/I =1 2x

1

1 dx

3 e

− +

309*/I = π x2

π

sin xdx

− +

310*/I =

π 2 0

sin x dx cos x sin x

+

311/I =

π 4 2

0

cos x sin x

+

312*/I =

π 2 2 0

tgx dx

1 ln (cos x)

313*/I =

π 2 0

sin x dx cos x sin x

+

314*/I =11 x 2

(e 1)(x 1)

315*/I =1 3x 1

316*/I =1 22

0

x dx

+

317*/I =

π

3 2

0

cos 3cos x 3

− +

318*/Tìm x> 0 sao cho

2 t x 2 0

t e

dt 1 (t 2)

+

319*/I =

π 3

2 π

4

tan x

dx cos x cos x 1

+

320*/I =1 2

0 ∫ −3x +6x 1dx+

321*/I =

π

0 ∫tg x dx

322/I =

π

π 6

cotg x dx

323/I =

π

π 4

tg x dx

324*/I =

π 4 0

1 dx

2 tgx

+

325/I =

π 5 2 0

sin x dx cos x 1

+

326/I =

π 3 2 π 6

cos 2x dx

1 cos 2x

327*/I =

π

0

t gx 1

tgx 1

+

328*/I =

1 3 1 2

x dx

+

329*/I =23 4 3

1

x x dx x

∫ −

330/I =

x

ln 3

0

+ −

331/I =

π 1 4 e 2 1 e

x cos (ln x 1)

+

332/I =2π

3

sin x 1 cos x

+

333*/I =

π 4 0 ln(1 tgx)dx

∫ +

3

Ngày đăng: 08/08/2014, 13:20

TỪ KHÓA LIÊN QUAN

w