1. Trang chủ
  2. » Giáo Dục - Đào Tạo

BÀI TẬP CHUYÊN ĐỀ HÀM SỐ pot

3 540 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Chuyên đề hàm số
Tác giả Vũ Văn Hải
Trường học Trường Đại Học
Chuyên ngành Toán học
Thể loại Chuyên đề
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 3
Dung lượng 181,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tìm điểm M thuộc C sao cho tổng khoảng cách từ M đến 2 trục tọa độ là nhỏ nhất.. Gọi I là gia điểm của 2 đường tiệm cận.. Tìm m để trên đồ thị tồn tại điểm B sao cho tam giác IAB vuôn

Trang 1

ĐT 01658199955

CHUYÊN ĐỀ HÀM SỐ ( tiếp)

y= − mx + m+ xC

1 Tìm m để hàm số đồng biến trên (2;+∞].

2 Tìm m để ( )C cắt Ox tại 3 điểm phân biệt có hoành độ lần lượt là m x , x , x sao cho 1 2 3 x1< <1 x2 <x3.

y= m+ − m+ xx+ mC

1 Chứng minh rằng ( )C luôn có 3 điểm cố định nằm trên một đường thẳng m

2 Tìm m để hàm số đạt cực trị tại x x sao cho 1, 2 − < < <1 x1 2 x2

y= f x = − +

1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

2 Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình: 8 osc 4x−9 osc 2x m+ =0 với

[0; ]

x∈ π

Bài 4 Cho hàm số y= f x( )=x4−2x2

1 Khảo sát và vẽ đồ thị (C) của hàm số

2 Trên (C) lấy hai điểm phân biệt A và B có hoành độ lần lượt là a và b Tìm điều kiện đối với a và b để hai tiếp tuyến của (C) tại A và B song song với nhau

Bài 5 Cho hàm số y mx 4

+

= + (1)

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m 1=

2 Tìm tất cả các giá trị của tham số m để hàm số (1) nghịch biến trên khoảng (- ¥;1).

Bài 6.Cho hàm số y = x3 – 3x + 1 có đồ thị (C) và đường thẳng (d): y = mx + m + 3

1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

2 Tìm m để (d) cắt (C) tại ba điểm phân biệt M(-1; 3), N, P sao cho tiếp tuyến của (C) tại N và P vuông góc nhau

Bài 7.Cho hàm số y= x3 −3(m+1)x2 +9xm , với m là tham số thực.

1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho ứng với m=1

2 Xác định m để hàm số đã cho đạt cực trị tại x1, x2 sao cho x1−x2 ≤2.

Bài 8 Cho hàm số y x= −3 3x 2 ( )+ C

1 Khảo sát và vẽ đồ thị hàm số trên

2 Viết phương trình đường thẳng d biết d cắt ( C ) tại 3 điểm phân biệt A, B, C sao cho điểm A có hoành

độ là 2 và BC=2 2

Bài 9 Cho hàm số: 2 2

,(1) 1

x y x

+

=

1 Khảo sát sự biến thiên và vẽ đồ thị ( )C của hàm số (1)

2 Ilà giao điểm hai tiệm cận của ( )C , đường thẳng( )d có phương trình:x−2y+ =5 0, ( )d cắt ( )C tại hai điểm A B, với A có hoành độ dương Viết phương trình các tiếp tuyến của( )C vuông góc với IA

y x= + m + m+ x+ C Tìm m để đường thẳng :d y x= +4cắt đồ thị ( )C tại m

3 điểm phân biệt A, B, C sao cho diện tích tam giác MBC có diện tích bằng 4 Với B, C có hoành độ khác 0 và điểm M( 1;3 )

Bài 11 Tìm m để đồ thị hàm số y x= −3 mx (2+ m+1)x m− −2 cắt Ox tại 3 điểm phân biệt có hoành độ dương

Trang 2

ĐT 01658199955

Bài 12 Tìm 2 điểm A, B thuộc đồ thị hàm số y x= −3 3x2+1 sao cho tiếp tuyến tại A, B song song với nhau và

AB=4 2

Bài 13 Cho hàm số 2 ( )

1

x

x

=

− Tìm m để đường thẳng y m= x− +m 2 cắt đồ thị ( C ) tại 2 điểm phân biệt

A, B sao cho AB có độ dài nhỏ nhất

Bài 14 Cho hàm số 1( )

1

x

x

= + Tìm điểm M thuộc ( C) sao cho tổng khoảng cách từ M đến 2 trục tọa độ là

nhỏ nhất

Bài 15 Cho hàm số 3 1( )

1

x

x

+

=

− và đường thẳng :d y=(m+1)x m+ −2 Tìm m để đường thẳng d cắt ( C )

tại 2 điểm phân biệt A, B sao cho tam giác OAB có diện tích bằng 3

2.

y x= − + −m x+ + m C Tìm m để (C m) có 2 điểm cực trị đồng thời 2 điểm cực trị cùng với gốc tọa độ O tạo thành một tam giác có diện tích bằng 4

Bài 17 Cho hàm số 2 1 ( )

1

x

x

+

= + Viết phương trình đường thẳng đi qua điểm M(1;3) cắt ( C ) tại 2 điểm

phân biệt A, B sao cho AB=2 3

Bài 18.Cho hàm số y x= −3 3x2+3 1( −m x) + +1 3m (C m)

1 Khảo sát và vẽ đồ thị của hàm số với m = 1

2 Tìm m để đồ thị (C m) cắt trục hoành tại 3 điểm phân biệt có hoành độ x x x thỏa mãn1, ,2 3

2 2 2

1 2 3 4

x + +x x <

Bài 19 Cho hàm số 1( )

1

x

x

= + Tìm m để đường thẳng :d y x m= + cắt ( C ) tại 2 điểm phân biệt A, B sao

2

OA +OB =

Bài 20 Cho hàm số y 2m x (C m)

x m

= + và điểm A(0;1) Gọi I là gia điểm của 2 đường tiệm cận Tìm m để trên

đồ thị tồn tại điểm B sao cho tam giác IAB vuông cân tại A

Bài 21 Cho hàm số y x= 4−2 x (m 2 C m).Tìm m để (C m) có 2 điểm cực tiểu và hình phẳng giới hạn bởi đồ thị

và đường thẳng đi qua 2 điểm cực tiểu ấy có diện tích bằng 1

y x= + mx +mm+ C Tìm m để đồ thị có 3 điểm cực trị tạo thành một

tam giác vuông cân

y= − +x + mxmC Tìm m để (C m) có 2 điểm cực trị , đồng thời 2 điểm cực trị đó cùng với gốc tọa độ O tạo thành một tam giác vuông tại O

Bài 24 Cho hàm số ( )2

2 (2x 1) ( )

y= −xC và đường thẳng :d y m= x Tìm m để ( C ) có 2 tiếp tuyến song song với đường thẳng d Giả sử M, N là các tiếp điểm Chứng minh rằng trung điểm của đoạn thẳng MN là một điểm cố định

Bài 24 Cho hàm số 2 1( )

1

x

x

+

=

− Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến đó tạo với 2

trục tọa độ một tam giác có diện tích bằng 8

Trang 3

ĐT 01658199955

Bài 25 Cho hàm số 2 ( )

2

x

x

= + Viết phương trình tiếp tuyến của ( C ) biết khoảng cách từ tâm đối xứng

của ( C ) đến tiếp tuyến đó là lớn nhất

Bài 26.Viết phương trình tiếp tuyến của ( ) :C y=2x3−3x2+5 biết tiếp tuyến đó đi qua điểm A 19; 4

12

Bài 27.Tìm những điểm trên đường thẳng x = 2 mà từ đó kẻ được 3 tiếp tuyến đến đồ thị

Ngày đăng: 08/08/2014, 00:22

TỪ KHÓA LIÊN QUAN

w