Appendix OFormulas from Linear Algebra Kramer’s Rule.. “Professors often present difficult problems that have simple, elegant solutions.. Note that mathematicians never refer to problems
Trang 2I.5 Table of Fourier Cosine Transforms
π
Z ∞ 0
f (x) cos (ωx) dx
2
Z ∞ 0
Trang 3I.6 Table of Fourier Sine Transforms
π
Z ∞ 0
f (x) sin (ωx) dx
2
Z ∞ 0
Trang 4
1 1
πω2
Trang 5W [eaxcos(bx), eaxsin(bx)] b e2ax
W [eaxcosh(bx), eaxsinh(bx)] b e2ax
W [sin(c(x − a)), sin(c(x − b))] c sin(c(b − a))
W [cos(c(x − a)), cos(c(x − b))] c sin(c(b − a))
W [sin(c(x − a)), cos(c(x − b))] −c cos(c(b − a))
Trang 6W [sinh(c(x − a)), sinh(c(x − b))] c sinh(c(b − a))
W [cosh(c(x − a)), cosh(c(x − b))] c cosh(c(b − a))
W [sinh(c(x − a)), cosh(c(x − b))] −c cosh(c(b − a))
Wedx
sin(c(x − a)), edxsin(c(x − b)) c e2dxsin(c(b − a))
Wedx
cos(c(x − a)), edxcos(c(x − b)) c e2dxsin(c(b − a))
Wedxsin(c(x − a)), edxcos(c(x − b))
−c e2dxcos(c(b − a))
Wedxsinh(c(x − a)), edxsinh(c(x − b))
c e2dxsinh(c(b − a))
Wedxcosh(c(x − a)), edxcosh(c(x − b)) −c e2dxsinh(c(b − a))
Wedxsinh(c(x − a)), edxcosh(c(x − b)) −c e2dxcosh(c(b − a))
W [(x − a) ecx, (x − b) ecx] (b − a) e2cx
Trang 7, n ∈ N
, n ∈ N
Trang 8hy0, y0i = b − a, hyn, yni = b − a
2 for n ∈ N
Trang 9p(t) dt
H(x − ξ)
Trang 10• y00+ c2y = 0, y(a) = y(b) = 0, c 6= b−anpi, n ∈ N
G(x|ξ) = sin(c(x<− a)) sin(c(x>− b))
c sin(c(b − a))
• y00+ c2y = 0, y(a) = y0(b) = 0, c 6= (2n−1)pi2(b−a) , n ∈ N
G(x|ξ) = −sin(c(x<− a)) cos(c(x>− b))
c cos(c(b − a))
• y00+ c2y = 0, y0(a) = y(b) = 0, c 6= (2n−1)pi2(b−a) , n ∈ N
G(x|ξ) = cos(c(x<− a)) sin(c(x>− b))
c cos(c(b − a))
Trang 11• y00+ 2cy0+ dy = 0, y(a) = y(b) = 0, c2 > d
Trang 13Function Sum and Difference Identities
sin x + sin y = 2 sin1
2(x + y) cos
1
2(x − y)sin x − sin y = 2 cos1
2(x + y) sin
1
2(x − y)cos x + cos y = 2 cos1
2(x + y) cos
1
2(x − y)cos x − cos y = −2 sin1
2(x + y) sin
1
2(x − y)Double Angle Identities
sin 2x = 2 sin x cos x, cos 2x = cos2x − sin2xHalf Angle Identities
sin x sin y = 1
2cos(x − y) −
1
2cos(x + y)cos x cos y = 1
2cos(x − y) +
1
2cos(x + y)sin x cos y = 1
2sin(x + y) +
1
2sin(x − y)cos x sin y = 1
2sin(x + y) −
1
2sin(x − y)Exponential Identities
eıx = cos x + ı sin x, sin x = e
ıx− e−ıx
ı2 , cos x =
eıx+ e−ıx2
Trang 141tanh xPythagorean Identities
cosh2x − sinh2x = 1, tanh2x + sech2x = 1Relation to Circular Functions
sinh(ıx) = ı sin x sinh x = −ı sin(ıx)cosh(ıx) = cos x cosh x = cos(ıx)tanh(ıx) = ı tan x tanh x = −ı tan(ıx)Angle Sum and Difference Identities
sinh(x ± y) = sinh x cosh y ± cosh x sinh ycosh(x ± y) = cosh x cosh y ± sinh x sinh ytanh(x ± y) = tanh x ± tanh y
1 ± tanh x tanh y =
sinh 2x ± sinh 2ycosh 2x ± cosh 2ycoth(x ± y) = 1 ± coth x coth y
coth x ± coth y =
sinh 2x ∓ sinh 2ycosh 2x − cosh 2y
Trang 15Function Sum and Difference Identities
sinh x ± sinh y = 2 sinh 1
2(x ± y) cosh
1
2(x ∓ y)cosh x + cosh y = 2 cosh1
2(x + y) cosh
1
2(x − y)cosh x − cosh y = 2 sinh 1
2(x + y) sinh
1
2(x − y)tanh x ± tanh y = sinh(x ± y)
cosh x cosh ycoth x ± coth y = sinh(x ± y)
sinh x sinh y
Double Angle Identities
sinh 2x = 2 sinh x cosh x, cosh 2x = cosh2x + sinh2xHalf Angle Identities
sinh x sinh y = 1
2cosh(x + y) −
1
2cosh(x − y)cosh x cosh y = 1
2cosh(x + y) +
1
2cosh(x − y)sinh x cosh y = 1
2sinh(x + y) +
1
2sinh(x − y)See Figure M.1 for plots of the hyperbolic circular functions
Trang 16-2 -1 1 2
-3 -2 -1 1 2 3
-1 -0.5
0.5 1
Figure M.1: cosh x, sinh x and then tanh x
Trang 17rJν(j0ν,mr)Jν(j0ν,nr) dr = j
02 ν,n− ν2
2j02 ν,n
Jν(j0ν,n)2δmn
Z 1 0
rJν(αmr)Jν(αnr) dr = 1
2α2 n
a2
b2 + α2n− ν2
(Jν(αn))2δmnHere αn is the nth positive root of aJν(r) + brJ0ν(r), where a, b ∈ R
Trang 18Appendix O
Formulas from Linear Algebra
Kramer’s Rule Consider the matrix equation
A~x = ~b
This equation has a unique solution if and only if det(A) 6= 0 If the determinant vanishes then there are either nosolutions or an infinite number of solutions If the determinant is nonzero, the solution for each xj can be written
xj = det Ajdet Awhere Aj is the matrix formed by replacing the jth column of A with b
Example O.0.1 The matrix equation
,has the solution
x1 =
5 2
6 4
1 2
3 4
= −9
−2 =9
2.
Trang 20u · dr
Trang 21Appendix Q
Partial Fractions
A proper rational function
p(x)q(x) =
p(x)(x − a)nr(x)Can be written in the form
p(x)(x − α)nr(x) =
a0(x − α)n + a1
(x − α)n−1 + · · · + an−1
x − α
+ (· · · )where the ak’s are constants and the last ellipses represents the partial fractions expansion of the roots of r(x) Thecoefficients are
ak = 1k!
dk
dxk
p(x)r(x)
x=α
Example Q.0.2 Consider the partial fraction expansion of
1 + x + x2(x − 1)3 The expansion has the form
a0
(x − 1)3 + a1
(x − 1)2 + a2
x − 1.
Trang 22The coefficients are
a0 = 10!(1 + x + x
2)|x=1 = 3,
a1 = 11!
d
dx(1 + x + x
2)|x=1 = (1 + 2x)|x=1 = 3,
a2 = 12!
1 + x + x2
x2(x − 1)2.The expansion has the form
a0
x2 +a1
x +
b0(x − 1)2 + b1
x − 1.The coefficients are
a0 = 10!
1 + x + x2
(x − 1)2
...
5
6
1
3
= 8< /sup>
−2 = −4, x2 =... data-page="21">
Appendix Q
Partial Fractions
A proper rational function
p(x)q(x) =
p(x)(x − a)nr(x)Can be written in the form
p(x)(x − α)nr(x)... an−1
x − α
+ (· · · )where the ak’s are constants and the last ellipses represents the partial fractions expansion of the roots of r(x) Thecoefficients are
ak