1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 8 pot

40 408 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 8 pot
Trường học University
Chuyên ngành Mathematical Methods
Thể loại Lecture Notes
Năm xuất bản 2023
Thành phố Unknown
Định dạng
Số trang 40
Dung lượng 313,7 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Let f z be a single-valued analytic tion with only isolated singularities and no singularities on the positive, real axis, [0, ∞... 13.8 Exploiting SymmetryWe have already used symmetry

Trang 2

Result 13.7.1 Integrals from Zero to Infinity Let f (z) be a single-valued analytic tion with only isolated singularities and no singularities on the positive, real axis, [0, ∞) Let

func-a 6∈ Z If the integrfunc-als exist then,

Z ∞ 0

where z1, , zn are the singularities of f (z) and there is a branch cut on the positive real axis with 0 < arg(z) < 2π.

Trang 3

13.8 Exploiting Symmetry

We have already used symmetry of the integrand to evaluate certain integrals For f (x) an even function we wereable to evaluate R0∞f (x) dx by extending the range of integration from −∞ to ∞ For

Z ∞ 0

xαf (x) dx

we put a branch cut on the positive real axis and noted that the value of the integrand below the branch cut is aconstant multiple of the value of the function above the branch cut This enabled us to evaluate the real integral withcontour integration In this section we will use other kinds of symmetry to evaluate integrals We will discover thatperiodicity of the integrand will produce this symmetry

We note that zn = rneınθ is periodic in θ with period 2π/n The real and imaginary parts of zn are odd periodic

in θ with period π/n This observation suggests that certain integrals on the positive real axis may be evaluated byclosing the path of integration with a wedge contour

Example 13.8.1 Consider

Z ∞ 0

1

1 + xndx

Trang 4

where n ∈ N, n ≥ 2 We can evaluate this integral using Result 13.7.1.

Z ∞ 0

of r and θ, it is periodic in θ with period 2π/n

Trang 5

contour We evaluate the residue there.

Res

1

Z

C R

1

1 + zndz

≤ 2πR

n z∈CmaxR

1cosh z

≤ π max

y∈[0 π]

2

e±R+ıy+ e∓R−ıy

...

scos2< /small>x cosh2< /sup>y + sin2< /sup>x sinh2< /sup>ysin2< /sup>x cosh2< /sup>y + cos2< /small>x sinh2< /sup>y

scosh2< /sup>ysinh2< /sup>y...

x2

I

C

1cosh z dz = ? ?2? ? Res

1cosh z,

ı? ?2



= ? ?2? ? lim

z→ıπ /2< /small>

z − ıπ/2cosh... integral exists for −1 < a <

Trang 8< /span>

For a = 0, the value of the integral is 2? ? Now consider

Ngày đăng: 06/08/2014, 01:21

TỪ KHÓA LIÊN QUAN