We take the Fourier cosine transform of the differential equation.. Now we solve the differential equation with the Laplace transform... We use the Green function to find the solution of
Trang 2Exercise 32.15
1 Use the sine transform to solve
y00− a2y = 0 on x ≥ 0 with y(0) = b, y(∞) = 0
2 Try using the Laplace transform on this problem Why isn’t it as convenient as the Fourier transform?
3 Use the sine transform to show that the Green function for the above with b = 0 is
g(x; ξ) = 1
2a e
−a(x−ξ)− e−a|x+ξ|Hint, Solution
Trang 32 Use this Green’s function to show that the solution of
y00+ 2µy0+ (β2+ µ2)y = g(x), µ > 0, β > 0, y(−∞) = y(∞) = 0,with g(±∞) = 0 in the limit as µ → 0 is
y = 1β
f (x) cos(ωx) dx
1 From the Fourier theorem show that the inverse cosine transform is given by
f (x) = 2
Z ∞ 0
Trang 43 Use the cosine transform to solve the following boundary value problem.
y00− a2y = 0 on x > 0 with y0(0) = b, y(∞) = 0Hint, Solution
f (x) sin(ωx) dx
1 Show that the inverse sine transform is given by
f (x) = 2
Z ∞ 0
3 Use this property to solve the equation
y00− a2y = 0 on x > 0 with y(0) = b, y(∞) = 0
4 Try using the Laplace transform on this problem Why isn’t it as convenient as the Fourier transform?Hint, Solution
Exercise 32.20
Show that
F [f (x)] = 1
2(Fc[f (x) + f (−x)] − ıFs[f (x) − f (−x)])where F , Fc and Fs are respectively the Fourier transform, Fourier cosine transform and Fourier sine transform.Hint, Solution
Trang 5x2+ b2, 0 < a < b.
Use Fourier transforms and the inverse transform Justify the choice of any contours used in the complex plane.Hint, Solution
Trang 6Consider the two cases <(ω) < 0 and <(ω) > 0, closing the path of integration with a semi-circle in the lower or upperhalf plane.
Trang 8Hint 32.21
Trang 9Z c
−c
e−ıωx dx
= 12π
F
1
x2 + c2
= 12π
x2+ c2
= 12π2πi Res
e−ıωx(x − ıc)(x + ıc), x = ıc
= 12ce
cω
Trang 10If ω > 0 then we close the path of integration in the lower half plane.
F
1
x2 + c2
= − 12π2πi Res
e−ıωx
(x − ıc)(x + ıc), −ıc
= 12ce
−cω
Thus we have that
F
1
x2+ c2
= 12ce
y0sin(ωx) dx
= 1π
h
y sin(ωx)i
∞ 0
−ωπ
Z ∞ 0
y00sin(ωx) dx
= 1π
h
y0sin(ωx)i
∞ 0
−ωπ
Z ∞ 0
y0cos(ωx) dx
= −ωπ
y sin(ωx) dx
= −ω2ˆs(ω) + ω
πy(0).
Trang 11
ˆωa
.Thus
F [f (ax)] = 1
|a| ˆ
ωa
Trang 12
Solution 32.5
Fs[f (x)g(x)] = 1
π
Z ∞ 0
f (x)g(x) sin(ωx) dx
= 1π
Z ∞ 0
2
Z ∞ 0
ˆs(η) sin(ηx) dη
g(x) sin(ωx) dx
= 2π
Z ∞ 0
Z ∞ 0
ˆ
s(η)g(x) sin(ηx) sin(ωx) dx dη
Use the identity, sin a sin b = 12[cos(a − b) − cos(a + b)]
= 1π
Z ∞ 0
Z ∞ 0
ˆs(η)g(x)hcos((ω − η)x) − cos((ω + η)x)idx dη
=
Z ∞ 0
ˆs(η) 1π
Z ∞ 0
g(x) cos((ω − η)x) dx − 1
π
Z ∞ 0
g(x) cos((ω + η)x) dx
dη
Fs[f (x)g(x)] =
Z ∞ 0
ˆs(η)Gc(|ω − η|) − Gc(ω + η) dη
Trang 13Solution 32.6
Fs−1[ ˆfs(ω)Gc(ω)] = 2
Z ∞ 0
ˆ
s(ω)Gc(ω) sin(ωx) dω
= 2
Z ∞ 0
1π
Z ∞ 0
f (ξ) sin(ωξ) dξ
Gc(ω) sin(ωx) dω
= 2π
Z ∞ 0
Z ∞ 0
f (ξ)Gc(ω) sin(ωξ) sin(ωx) dω dξ
= 1π
Z ∞ 0
Z ∞ 0
f (ξ)Gc(ω)hcos(ω(x − ξ)) − cos(ω(x + ξ))idω dξ
= 12π
Z ∞ 0
f (ξ)
2
Z ∞ 0
Gc(ω) cos(ω(x − ξ)) dω − 2
Z ∞ 0
Gc(ω) cos(ω(x + ξ)) dω)
dξ
= 12π
Z ∞ 0
f (ξ)[g(x − ξ) − g(x + ξ)] dξ
Fs−1[ ˆfs(ω)Gc(ω)] = 1
2π
Z ∞ 0
xf (x) cos(ωx) dx
= 1π
Z ∞ 0
Z ∞ 0
f (x) sin(ωx) dx
= ∂
∂ω
ˆs(ω)
Trang 14Fs[xf (x)] = 1
π
Z ∞ 0
xf (x) sin(ωx) dx
= 1π
Z ∞ 0
Z ∞ 0
ω/π
ω2+ 1 +
13
f (x) sin(ωx) dx
Trang 15Extend the integration because the integrand is even.
= 12π
Z ∞
−∞
f (x) sin(ωx) dxNote that R−∞∞ f (x) cos(ωx) dx = 0 as the integrand is odd
= 12π
ˆ
f (ω) sin(ωx) dωExtend the integration because the integrand is even
Trang 16Fs−1h ˆf (ω) = −ıF−1h ˆf (ω) , for odd ˆf (ω).For general ˆf (ω), use the odd extension, sign(ω) ˆf (|ω|) to write the result.
xf (x) cos(ωx) dx
= 1π
Z ∞ 0
Z ∞ 0
xf (x) sin(ωx) dx
= 1π
Z ∞ 0
Z ∞ 0
f (x) cos(ωx) dx
= − ∂
∂ω
ˆc(ω)
Trang 17Fc[f (cx)] = 1
π
Z ∞ 0
f (cx) cos(ωx) dx
= 1π
Z ∞ 0
f (ξ) cosω
cξ
dξc
= 1c
ˆ
c
ωc
Fs[f (cx)] = 1
π
Z ∞ 0
f (cx) sin(ωx) dx
= 1π
Z ∞ 0
f (ξ) sinω
cξ
dξc
= 1c
ˆ
s
ωc
Solution 32.11
p4πab/(a − b)p4πab/(a − b)e
−ω 2 (a−b)/(4ab)
Trang 18Z ∞ 0
Z ∞ 0
Z ∞ c
e−zx dz
sin(ωx) dx
= 1π
Z ∞ c
Z ∞ 0
e−zxsin(ωx) dx dz
= 1π
Z ∞ c
ω
z2+ ω2 dz
= 1π
harctanz
ω
i∞ c
= 1π
y(ω) = − a
π(ω2+ a2)2
Trang 19We take the inverse Fourier transform to find the solution of the differential equation.
= −ı2πa
π Res
1(ω − ıa)2(ω + ıa)2 eıxω, ω = ıa
= −ı2a lim
ω→ıa
ddω
Trang 20Solution 32.14
1 We take the Fourier cosine transform of the differential equation
−ω2y(ω) −ˆ b
π − a2y(ω) = 0ˆˆ
y(ω) = − b
π(ω2+ a2)Now we take the inverse Fourier cosine transform We use the fact that ˆy(ω) is an even function
ω2+ a2Fc[δ(x − ξ)]
Trang 21We express the right side as a product of Fourier cosine transforms.
ˆG(ω; ξ) = −π
f (t) g(|x − t|) + g(x + t) dt
G(x; ξ) = −π
a
12π
Z ∞ 0
1 We take the Fourier sine transform of the differential equation
−ω2y(ω) +ˆ bω
π − a2y(ω) = 0ˆˆ
π(ω2+ a2)Now we take the inverse Fourier sine transform We use the fact that ˆy(ω) is an odd function
y(x) = Fs−1
bωπ(ω2+ a2)
= −ıF−1
bωπ(ω2+ a2)
= −ıb
πı2π Res
ω
Trang 22y(x) = b e−ax
2 Now we solve the differential equation with the Laplace transform
y00− a2y = 0
s2y(s) − sy(0) − yˆ 0(0) − a2y(s) = 0ˆ
We don’t know the value of y0(0), so we treat it as an unknown constant
ˆy(s) = bs + y
ω2+ a2Fs[δ(x − ξ)]
Trang 23We write the right side as a product of Fourier cosine transforms and sine transforms.
ˆG(ω; ξ) = −π
f (t) g(|x − t|) − g(x + t) dt
G(x; ξ) = −π
a
12π
Z ∞ 0
Trang 24the integrand is analytic there, the integral is zero G(x; ξ) = 0 for x < ξ For x > ξ we have
2 We use the Green function to find the solution of the inhomogeneous equation
y00+ 2µy0+ β2+ µ2 y = g(x), y(−∞) = y(∞) = 0
y(x) =
Z ∞
−∞
g(ξ)G(x; ξ) dξy(x) =
Z x
−∞
g(ξ) sin(β(x − ξ)) dξ
Trang 25x2+ c2
= 12π
Z ∞
−∞
e−ıωx(x − ıc)(x + ıc)dx
If ω < 0 then we close the path of integration with a semi-circle in the upper half plane
x2+ c2
= 12ce
1
x2+ b2 0 < a < b
Trang 26We take the Fourier transform, utilizing the convolution theorem.
u(ω) = a e
−(b−a)|ω|
2πbu(x) = a
ˆc(ω) cos(ωx) dω
Trang 27Fc[y00] = 1
π
Z ∞ 0
y cos(ωx) dx
Fc[y00] = −ω2ˆc(ω) − y
0(0)π
3 We take the Fourier cosine transform of the differential equation
−ω2y(ω) −ˆ b
π − a2y(ω) = 0ˆˆ
y(ω) = − b
π(ω2+ a2)Now we take the inverse Fourier cosine transform We use the fact that ˆy(ω) is an even function
y(x) = −b
ae
−ax
Trang 28Z ∞
−∞
f (x)(cos(ωx) − ı sin(ωx)) dx
= −ıπ
Z ∞ 0
−ıπ
Z ∞ 0
f (x) sin(ωx) dx
sin(ωx) dω
= 2
Z ∞ 0
1π
Z ∞ 0
f (x) sin(ωx) dx
sin(ωx) dω
This gives us the Fourier sine transform pair
f (x) = 2
Z ∞ 0
ˆs(ω) sin(ωx) dω, ˆs(ω) = 1
π
Z ∞ 0
f (x) sin(ωx) dx
Trang 29Fs[y00] = 1
π
Z ∞ 0
y00sin(ωx) dx
= 1π
h
y0sin(ωx)i
∞ 0
−ωπ
Z ∞ 0
y0cos(ωx) dx
= −ωπ
π(ω2+ a2)Now we take the inverse Fourier sine transform We use the fact that ˆy(ω) is an odd function
y(x) = Fs−1
bωπ(ω2+ a2)
= −ıF−1
bωπ(ω2+ a2)
= −ıb
πı2π Res
ω
Trang 304 Now we solve the differential equation with the Laplace transform.
y00− a2y = 0
s2y(s) − sy(0) − yˆ 0(0) − a2y(s) = 0ˆ
We don’t know the value of y0(0), so we treat it as an unknown constant
ˆy(s) = bs + y
f (x) cos(ωx) dx,
F [f (x)]s= 1
π
Z ∞ 0
Trang 31f (−x) cos(ωx) dx − ı
Z ∞ 0
f (x) sin(ωx) dx + ı
Z ∞ 0
f (−x) sin(ωx) dx1
x2+ a2
= F
1
x2+ b2
We find the Fourier transform of f (x) = 1
x 2 +c 2 Note that since f (x) is an even, real-valued function, ˆf (ω) is aneven, real-valued function
F
1
x2+ c2
= 12π
Z ∞
−∞
1
x2+ c2 e−ıωx dx
Trang 32For x > 0 we close the path of integration in the upper half plane and apply Jordan’s Lemma to evaluate the integral
in terms of the residues
= 12πı2π Res
e−ıωx(x − ıc)(x + ıc), x = ıc
−cω
Since ˆf (ω) is an even function, we have
F
1
x2+ c2
= 12ce
−c|ω|
.Our equation for ˆu(ω) becomes,
2π ˆu(ω) 1
2ae
−a|ω|
= 12be
−b|ω|
ˆu(ω) = a
Trang 33We would like to extend the factorial function so it is defined for all complex numbers.
Consider the function Γ(z) defined by Euler’s formula
Γ(z) =
Z ∞ 0
e−ttz−1dt
(Here we take the principal value of tz−1.) The integral converges for <(z) > 0 If <(z) ≤ 0 then the integrand will
be at least as singular as 1/t at t = 0 and thus the integral will diverge
Trang 34Difference Equation Using integration by parts,
Γ(z + 1) =
Z ∞ 0
e−ttzdt
=h− e−ttzi
∞ 0
−
Z ∞ 0
− e−tztz−1dt
Since <(z) > 0 the first term vanishes
= z
Z ∞ 0
e−ttz−1dt
= zΓ(z)Thus Γ(z) satisfies the difference equation
· · · = · · ·Γ(n + 1) = n!
Trang 35Thus the Gamma function, Γ(z), extends the factorial function to all complex z in the right half-plane For negative, integral n we have
non-Γ(n + 1) = n!
Analyticity The derivative of Γ(z) is
Γ0(z) =
Z ∞ 0
on the negative real axis
The integral in Hankel’s formula converges for all complex z For non-positive, integral z the integral does notvanish Thus because of the sine term the Gamma function has simple poles at z = 0, −1, −2, For positive,integral z, the integrand is entire and thus the integral vanishes Using L’Hospital’s rule you can show that the points,
z = 1, 2, 3, are removable singularities and the Gamma function is analytic at these points Since the only zeroes ofsin(πz) occur for integral z, Γ(z) is analytic in the entire plane except for the points, z = 0, −1, −2,
Trang 36Figure 33.1: The Hankel Contour.
Difference Equation Using integration by parts we can derive the difference equation from Hankel’s formula
Trang 37Both the numerator and denominator vanish Using L’Hospital’s rule,
= lim
z→1
R
Cettz−1log t dtı2π cos(πz)
=
R
Cetlog t dtı2πLet Cr be the circle of radius r starting at −π radians and going to π radians
= 1ı2π
Z −∞
0
et dt
= 1
Thus we obtain the same value as with Euler’s formula It can be shown that Hankel’s formula is the analytic continuation
of the Gamma function into the left half-plane
n
Trang 38
Substituting this into Euler’s formula,
Γ(z) =
Z ∞ 0
e−ttz−1dt
= lim
n→∞
Z n 0
1 − tn
(1 − τ )nnz−1τz−1n dτ
= lim
n→∞nz
Z 1 0
(1 − τ )nτz−1dτ
Let n be an integer Using integration by parts we can evaluate the integral
Z 1 0
(1 − τ )nτz−1dτ = (1 − τ )nτz
z
1 0
−
Z 1 0
−n(1 − τ )n−1τz
z dτ
= nz
Z 1 0
(1 − τ )n−1τzdτ
= n(n − 1)z(z + 1)
Z 1 0
(1 − τ )n−2τz+1dτ
= n(n − 1) · · · (1)z(z + 1) · · · (z + n − 1)
Z 1 0
τz+n−1dτ
= n(n − 1) · · · (1)z(z + 1) · · · (z + n − 1)
τz+n
z + n
1 0
z(z + 1) · · · (z + n)
Trang 39Thus we have that
z
= 1
z n→∞lim
1(1 + z)(1 + z/2) · · · (1 + z/n)n
z
= 1
z n→∞lim
1(1 + z)(1 + z/2) · · · (1 + z/n)
2z3z· · · (n + 1)z
1z2z· · · nz
= 1z
∞
Y
n=1
1
z
1 + zn
−1
We derived this formula from Euler’s formula which is valid only in the left half-plane However, the product formula
is valid for all z except z = 0, −1, −2,
33.4 Weierstrass’ Formula
Trang 40The Euler-Mascheroni Constant Before deriving Weierstrass’ product formula for the Gamma function we willneed to define the Euler-Mascheroni constant
Weierstrass’ formula for the Gamma function is then
1Γ(z) = z e
e−z/ni
Since the product is uniformly convergent, 1/Γ(z) is an entire function Since 1/Γ(z) has no singularities, we seethat Γ(z) has no zeros