1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Aircraft Flight Dynamics Robert F. Stengel Lecture19 Advanced LateralDirectional Dynamics

11 267 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Advanced Lateral-Directional Dynamics
Tác giả Robert Stengel
Trường học Princeton University
Chuyên ngành Aircraft Flight Dynamics
Thể loại Bài giảng
Năm xuất bản 2012
Thành phố Princeton
Định dạng
Số trang 11
Dung lượng 1,02 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Stabilizing Lateral-Directional Motions" • Provide sufficient Lβ – to stabilize the spiral mode" • Provide sufficient Nr– to damp the Dutch roll mode" How can Lβ and Nr be adjusted arti

Trang 1

Advanced Problems of

Robert Stengel, Aircraft Flight Dynamics


MAE 331, 2012 "

•  Fourth-order dynamics"

–   Steady-state response to control"

–   Transfer functions"

–   Frequency response"

–   Root locus analysis of parameter

variations "

•  Residualization"

•  Roll-spiral oscillation"

Copyright 2012 by Robert Stengel All rights reserved For educational use only.!

http://www.princeton.edu/~stengel/MAE331.html !

http://www.princeton.edu/~stengel/FlightDynamics.html !

Stability-Axis Lateral-Directional

Equations"

Δr(t)

Δ  β(t) Δp(t)

Δ  φ(t)

$

%

&

&

&

&

&

'

(

) ) ) ) )

=

Nr Nβ Np 0

−1 Yβ

VN 0

g

VN

Lr Lβ Lp 0

$

%

&

&

&

&

&

&

&

'

(

) ) ) ) ) ) )

Δr(t)

Δβ(t)

Δp(t)

Δφ(t)

$

%

&

&

&

&

&

'

(

) ) ) ) ) +

~ 0 NδR 0

0 0 YδSF

VN

LδA ~ 0 0

$

%

&

&

&

&

&

&

'

(

) ) ) ) ) )

ΔδA ΔδR ΔδSF

$

%

&

&

&

' (

) ) )

Δx1

Δx2

Δx3

Δx4

"

#

$

$

$

%

&

' ' '

=

Δr

Δβ

Δp

Δφ

"

#

$

$

$

%

&

' ' '

=

Yaw Rate Perturbation Sideslip Angle Perturbation Roll Rate Perturbation Roll Angle Perturbation

"

#

$

$

$

%

&

' ' '

Δu1

Δu2

"

#

$

$

%

&

' '=

ΔδA

ΔδR

"

#

%

&

' =

Aileron Perturbation Rudder Perturbation

"

#

$

$

%

&

' '

•   With idealized aileron and rudder effects (i.e., NδA = LδR = 0)"

Lateral-Directional

Characteristic Equation"

ΔLD(s) = s − ( λS) ( s − λR) ( s2+ 2 ζωns + ωn2)

•   Typically factors into real spiral and roll roots

and an oscillatory pair of Dutch roll roots"

ΔLD(s) = s4+ Lp+ Nr+ Yβ

VN

#

$%

&

'( s 3

+ Nβ− LrNp+ LpYβ

VN + Nr

Yβ

VN + Lp

#

$%

&

'(

*

+

- s 2

+ Yβ

VN( LrNp− LpNr) + Lβ Npg V

N

*

+,

-./ s + g V

N( LβNr− LrNβ)

= s4

+ a3s3

+ a2s2

+ a1s + a0= 0

Business Jet Example of

Lateral-Directional Characteristic Equation"

ΔLD(s) = s − 0.00883 ( ) ( s + 1.2 ) s2

+ 2 0.08 ( ) ( 1.39 ) s + 1.392

Slightly unstable Spiral!

Stable Roll!

Lightly damped Dutch roll!

Dutch roll!

Spiral!

Dutch roll!

Roll!

Trang 2

Steady-State Response

Δx S = −F −1 G Δu S

Equilibrium Response of"

Δr SS

ΔβSS

#

$

%

%

&

'

( (= −

Yβ

V N

−Nβ

1 N r

#

$

%

%

%

&

'

( ( (

Yβ

V N N r + Nβ

* +

-

N δR

0

#

$

%

%

&

'

( (ΔδRSS

ΔrS= −

Yβ

VN NδR

%

&

)

*

Yβ

VN Nr+ Nβ

%

&

)

*

Δδ RS

Δ S= − NδR

Yβ

VN Nr+ Nβ

%

&

)

*

Δδ RS

•   Equilibrium response to constant rudder"

•   Steady yaw rate and sideslip angle are not zero"

•   What is the corresponding ground track of the aircraft [ y(t) vs. x(t) ]?"

Equilibrium Response of

Roll-Spiral Model"

ΔpS= − LδA

Lp

Δ δAS

Δ φ (t)S= − LδA

L Δ δ ASdt

t

Δp SS

ΔφSS

#

$

%

%

&

'

(

(= −

L p 0

#

$

%

%

&

'

( (

−1

L δ A

0

#

$

%

%

&

'

( (Δ

δA SS

Lp 0

1 0

!

"

#

#

$

%

&

&

−1

=

0 0

−1 Lp

!

"

#

#

$

%

&

&

0

but"

proportional to aileron"

rate, continually increases"

•   Equilibrium state with constant aileron"

ΔpS= −Lp−1

LδAΔδAS

taken

alone"

Equilibrium Response of

4 th -Order Model"

•   Equilibrium state with constant aileron, rudder, and side-force panel deflection"

ΔrS

ΔβS

ΔpS

ΔφS

$

%

&

&

&

&

&

'

(

) ) ) ) )

= −

−1 Yβ

g

VN

$

%

&

&

&

&

&

&

&

'

(

) ) ) ) ) ) )

−1

~ 0 NδR 0

0 0 YδSF

VN

$

%

&

&

&

&

&

&

'

(

) ) ) ) ) )

ΔδAS

ΔδRS

ΔδSFS

$

%

&

&

&

'

(

) ) )

Trang 3

Equilibrium Response of the 4 th -Order

Lateral-Directional Model"

ΔyS = HxΔxS = −HxF−1G ΔuS •  With H x =

Identity matrix "

  Observations"

–  Steady-state roll rate is zero"

–  Aileron and rudder commands produce steady-state yaw rate, sideslip angle, and roll

angle"

–  Side force command produces steady-state roll angle but has no effect on steady-state

yaw rate or sideslip angle "

Δr S

ΔβS

Δp S

ΔφS

$

%

&

&

&

&

&

'

(

)

)

)

)

)

=

g

V N L δA Nβ −g

V N LβN δR 0

g

V N L δA N r g

V N L r N δR 0

Nβ+ N r Yβ

V N

,

-/ 0

1 L δA − Lβ+ L r Yβ

V N

,

-/ 0

1 N δR (L r Nβ− LβN r)Y δSF

V N

$

%

&

&

&

&

&

&

&

&

&

'

(

) ) ) ) ) ) ) ) )

g

V N(LβN r − L r Nβ)

ΔδAS

ΔδRS ΔδSFS

$

%

&

&

&

'

(

) ) )

Stability and Transient Response

Responses of Business Jet"

•   Initial roll angle and rate have little effect on yaw rate

and sideslip angle responses"

•   Initial yaw rate and sideslip angle have large effect on

roll rate and roll angle responses"

Initial !

yaw rate!

Initial !

sideslip angle!

Initial !

roll rate!

Initial !

roll angle!

Effects of Variation

in Primary Stability

Derivatives

Trang 4

N β Effect on 4 th -Order

Roots!

numerator"

ΔLD(s) = d(s) + Nβn(s) = 0

kn(s)

d(s) = −1 =

Nβ( s − z1) ( s − z2)

s − λ1

( ) ( s − λ2) s2

+ 2 ζωns + ωn

N! > 0"

N! < 0"

–  Increases Dutch roll natural frequency "

–  Damping ratio decreases but remains

stable"

–  Spiral mode drawn toward origin"

–  Roll mode unchanged "

Root Locus Gain = Directional Stability!

Roll! Spiral!

Dutch Roll!

Dutch Roll!

Zero!

Zero!

Roots"

ΔLD(s) = d(s) + Nrn(s) = 0 kn(s)

d(s) = −1 =

Nr( s − z1) s2

+ 2 µνns + νn

s − λ1

( ) ( s − λ2) s2

+ 2ζωns + ωn2

•   Negative Nr "

–   Increases Dutch roll damping "

–   Draws spiral and roll modes together drawn toward origin "

•   Positive Nr destabilizes Dutch roll mode"

Root Locus Gain = Yaw Damping!

Roll! Spiral!

Zero!

Dutch Roll!

Dutch Roll!

Zero!

Zero!

Roots"

ΔLD(s) = d(s) + Lpn(s) = 0

kn(s)

d(s) = −1 =

Lps s2 + 2µνns + νn

s − λ1

( ) ( s − λ2) s2

+ 2ζωns + ωn

•   Negative Lp "

–  Decreases roll mode time constant"

–  Draws spiral and roll modes together

drawn toward origin "

•   Positive Lp destabilizes roll mode"

•   Lphas negligible effect on spiral mode"

become positive at high angle of

attack"

Root Locus Gain = Roll Damping!

Roll! Zero! Spiral!

Dutch Roll & Zero!

Dutch Roll & Zero!

Coupling Stability Derivatives

and Their Effects

Trang 5

Dihedral Effect : Roll Acceleration

Lβ ≈ Clβ ρV

2

2Ixx

$

%

& ' (

)Sb

Clβ ≈ C ( )lβ Wing+ C ( )lβ Wing − Fuselage+ C ( )lβ Vertical Tail

principal contributors"

Typically < 0 for stability!

Dihedral Effect : Roll Acceleration

ρV2

2Ixx

$

%&

' () Sb

•   Dihedral and sweep effect"

β

Λ

' ()

* +,

•   Tapered, trapezoidal, swept wing"

•   High/low wing effect"

C lβ

b2

C lβ

( )Vertical Tailz vt

b( )C Yβ Vertical Tail

•   Vertical tail effect"

•   Negative Lβ "

–   Stabilizes spiral and roll modes but "

–   Destabilizes Dutch roll mode "

•   Positive Lβ does the opposite"

Root Locus Gain = Dihedral Effect!

ΔLD(s) = d(s) + Lβ g V

N− Np

n(s) d(s) = −1 =

Lβ g V

N− Np

( ) ( s − z1)

s − λS

( ) ( s − λR) s2

+ 2ζωn DRs + ωn2DR

< 0"

L! > 0"

Bizjet Example!

ΔLD(s) =

s − 0.00883

( ) ( s + 1.2 ) s2

+ 2 0.08 ( ) ( 1.39 ) s + 1.392

Roll! Zero! Spiral!

Dutch Roll!

Dutch Roll!

Trang 6

Stabilizing

Lateral-Directional Motions"

•   Provide sufficient Lβ (–) to stabilize the spiral mode"

•   Provide sufficient Nr(–) to damp the Dutch roll mode"

How can Lβ and Nr be adjusted artificially , i.e., by closed-loop control?!

Solar Impulse!

Fourth-Order Frequency Response

Responses of Business Jet"

to Rudder"

•  Yawing response to aileron is not negligible"

•  Yaw rate response is poorly characterized by the 2 nd -order model below the

Dutch roll natural frequency "

•  Sideslip angle response is adequately characterized by the 2 nd -order model"

Aileron and Rudder"

Δr j( )ω

ΔδA j( )ω

Δβ( )jω

ΔδA j( )ω

Δr j( )ω

ΔδR j( )ω

Δβ( )jω

ΔδR j( )ω

Δr jω( )

Δδ R jω( )

Δβ jω( )

Δδ R jω( )

to Aileron"

•  Roll response to rudder is not negligible"

•  Roll rate response is marginally well characterized by the 2 nd -order model"

•  Roll angle response is poorly characterized at low frequency by the 2 nd -order model"

Δp jω( )

Δδ R jω( )

Δφ jω( )

Δδ R jω( )

Δp jω( )

Δδ A jω( )

Δφ jω( )

Δδ A jω( )

Δp jω( )

Δδ A jω( )

Δφ jω( )

Δδ A jω( )

Aileron and Rudder"

Trang 7

Frequency and Step

• Roll rate response is relatively benign"

• Ratio of roll angle to sideslip response

is important to the pilot"

• Yaw/sideslip sensitivity in the vicinity

of the Dutch roll natural frequency"

Δr j( )ω

Δ δA j( )ω

Δβ jω( )

Δδ A jω( )

Δp j( )ω

Δ δA j( )ω

Δφ jω( )

Δδ A jω( )

Δv t( )

Δy t( )

Δr t( )

Δp t( )

Δψ t( )

Δφ t( )

Frequency and Step Responses

to Rudder Input "

• Lightly damped yaw/sideslip response

would be hard to control precisely"

• Yaw response variability near and below the Dutch roll natural frequency"

Dutch roll natural frequency"

Δr jω( )

Δδ R jω ( )

Δβ jω ( )

Δδ R jω ( )

Δp jω( )

Δδ R jω ( )

Δφ jω ( )

Δδ R jω ( )

Δv t( ) Δy t( )

Δr t( )

Δp t( )

Δψ t( )

Δφ t( )

Order Reduction

by Residualization

Approximate Low-Order Response"

•   Dynamic model order can be reduced when "

–   One mode is stable and well-damped , and it and is faster than the other"

–   The two modes are coupled "

Δxfast Δxslow

"

#

$

$

%

&

' ' =

Ffast Fslow fast

Ffast slow Fslow

"

#

$

$

%

&

' '

Δxfast

Δxslow

"

#

$

$

%

&

' ' +

Gfast

Gslow

"

#

$

$

%

&

' ' Δu

Δxf = FfΔxf + Fs fΔxs+ GfΔu Δxs = Ff sΔxf + FsΔxs + GsΔu

or!

Trang 8

Residualization Provides an

Approximation for Low-Order Dynamics"

•   Assume that fast mode reaches steady state on a time scale that

is short compared to the slow mode"

Δx f0 ≈ F f Δx f + F s f Δx s + G f Δu

Δx s = F f s Δx f + F s Δx s + G s Δu

•   Algebraic solution for Δxfast"

0 ≈ FfΔxf + Fs fΔxs+ GfΔu

FfΔxf = −Fs fΔxs− GfΔu

Δxf = −Ff−1 Fs f

Δxs+ GfΔu

•   Substitute quasi-steady Δxfastin differential equation for Δxslow "

Δxs = −Ff s Ff−1 Fs f

Δxs+ GfΔu

& + FsΔxs+ GsΔu

= Fs− Ff sFf−1Fs f

#$ %&Δxs+ G #$ s− Ff sFf−1Gf%&Δu

•   Residualized equation for Δxslow "

F's = Fs − Ff

s

Ff−1

Fs f

G's = Gs− Ff

s

Ff−1

Gf

where!

Residualization"

Residualized Roll-Spiral Mode"

•   Assume that the Dutch roll mode is stable

and faster than the roll mode"

roll on the roll and spiral modes"

ΔxDR ΔxRS

"

#

$

$

%

&

'

0

ΔxRS

"

#

$

$

%

&

'

' =

"

#

$

$

%

&

' '

"

#

$

$

%

&

' ' +

"

#

$

$

%

&

' '

ΔδA ΔδR

"

#

&

'

"

#

$

$

%

&

' '

Residualized Roll-Spiral Mode"

faster than the roll mode"

on the roll and spiral modes"

ΔxDR= −FDR

−1

FRS DR

ΔxRS+ GDR

Δδ A

Δδ R

$

%

( )

* + , -,

/ , 0,

ΔxRS= FRSΔxRS− FDR RSFDR−1 FRS DR

ΔxRS+ GDR Δδ A

Δδ R

$

%

( )

* + , -,

/ , 0,

+ GRS Δδ A

Δδ R

$

%

( )

= F'RSΔxRS+ G'RS Δδ A

Δδ R

$

%

( )

Trang 9

Model of the Residualized

Roll-Spiral Mode"

•   2nd-order approximation for roll and spiral modes"

Δp

#

$

% &

'

( = L p 0

1 0

#

$

% &

'

( Δp

Δφ

#

$

% &

' ( − L r Lβ

0 0

#

$

% &

' (

N r Nβ

−1 Yβ

V N

#

$

%

%

&

'

( (

−1

0 g

V N

#

$

%

%

&

'

( (

Δp

Δφ

#

$

% &

' ( +

NδA NδR

0 YδR

V N

#

$

%

%

&

'

( (

Δδ A

Δδ R

#

$

&

'

, -

/

0 1

2

+ LδA LδR

0 0

#

$

&

'

Δδ A

Δδ R

#

$

&

'

Δp

Δ  φ

#

$

%

%

&

'

(

( =

Lp

Np LrYβ

VN+ Lβ

+ ,

/ 0

Nβ+ NrYβ

VN

+ ,

/ 0

#

$

%

%

%

%

&

'

( ( ( (

g

VN( LrNβ− LβNr)

Nβ+ NrYβ

VN

+ ,

/ 0

#

$

%

%

%

%

&

'

( ( ( (

#

$

%

%

%

%

%

%

&

'

( ( ( ( ( (

Δp

Δφ

#

$

%

%

&

'

( ( +

= f11 f12

#

$

%

%

&

'

( (

Δp

Δφ

#

$

%

%

&

'

( ( +

Roots of the Residualized

Roll-Spiral Mode"

sI − F'RS = s 1 0

0 1

"

#

&

' − f11 f12

"

#

$

$

%

&

' '

= ΔRS res

= s2

− Lp− Np Lβ+ LrYβ/ VN

Nβ+ NrYβ/ VN

* +

-.

"

#

$

$

%

&

' '

s + g

VN

LβNr− LrNβ

Nβ+ NrYβ/ VN

* +

-.

= ( s − λS ) ( s − λR ) or s2

+ 2ζωns + ωn

•   For the business jet model"

ΔRS res = s2+ 1.0894s − 0.0108 = 0

= ( s − 0.0098 ) ( s + 1.1 ) = s − ( λS) ( s − λR)

•   Slightly unstable spiral mode"

•   Similar to 4th-order roll-spiral results "

ΔLD(s) = ( s − 0.00883 ) ( s + 1.2 ) s2

+ 2 0.08 ( ) ( 1.39 ) s + 1.392

Oscillatory Roll-Spiral Mode"

ΔRS res = s − ( λS) ( s − λR) or ( s2+ 2ζωns + ωn2)RS

•   The characteristic equation factors into

real or complex roots"

–   Real roots are roll mode and spiral mode when "

LβNr > LrNβ and

#

$

' ( < 1

LβNr < LrNβ

–   Complex roots produce roll-spiral oscillation

or lateral phugoid mode when!

Roll-Spiral Oscillation of a Lifting Reentry Vehicle"

Trang 10

Next Time:

Flying Qualities Criteria

Reading

Supplemental Material

Equilibrium Response of

4 th -Order Model"

•   Equilibrium state with constant aileron and

spiral wind perturbations"

ΔrSS

ΔβSS

ΔpSS

ΔφSS

$

%

&

&

&

&

&

'

(

) ) ) ) )

=

$

%

&

&

&

&

'

(

) ) ) )

Δδ ASS

Δδ RSS

ΔδSFSS

$

%

&

&

&

'

(

) ) )

•   Observations"

–  Aileron command"

–  Rudder command"

–  Side-force panel command"

–  Steady-state roll rate is zero"

–  Steady-state roll angle is bounded!

Effects of Variation

in Secondary Stability Derivatives

Trang 11

Roll Acceleration

L r ≈ C l r

ρV N

2

2I xx

#

$

&

'

(Sb

= C l ˆr

b

2V N

#

$

&

'

ρV N2

2I xx

#

$

&

'

(Sb = C l ˆr

ρV N 4I xx

#

$

&

'

(Sb2

•   Wing is the principal contributor"

–  Differential lift induced by yaw rate "

Cl ˆr

( )Wing= ∂ ΔC ( l)Wing

∂ ˆr = −

CL

α

12

1+ 3λ 1+ λ

&

'

)

*

M2 cos2

Λ − 2

M2 cos2

Λ −1

&

'

* +

•   Thin triangular wing"

Cl ˆr

( )Wing = π αN

9AR

•   Vertical tail"

Cl ˆr

( )Vertical Tail = zvt

lvt

Cn ˆr

( )Vertical Tail

Roots"

ΔLD(s) = d(s) + LrNpn(s) = 0 kn(s)

d(s) = −1 =

LrNp( s − z1) ( s − z2)

s − λ1

( ) ( s − λ2) s2

+ 2ζωns + ωn2

(negative here)"

•   Similar to Nβ effect on the Dutch

the spiral mode"

Root Locus Gain = Roll Due to Yaw Rate!

Yaw Acceleration

N p ≈ C n p

ρV N

2

2I zz

#

$%

&

'(Sb

= C n ˆp

b

2V N

#

$%

&

'(

ρV N

2

2I zz

#

$%

&

'(Sb = C n ˆp

ρV N

4I xx

#

$%

&

'(Sb

2

–   Differential yaw moment induced by roll rate "

Cn ˆp

( )Wing= ∂ ( ΔCn)Wing

ˆp =

1 12

1 + 3λ

1 + λ

$

%&

' ()

CD Parasite, Wing

∂α ± CL

$

%

' (

•   Thin triangular wing"

Cn ˆp

( )Wing= − π αN

9AR

•   Vertical tail"

Cn ˆp

( )Vertical Tail = −2αN

lvt b

#

$%

&

'( ( ) Cnβ Vertical Tail

(–): Subsonic!

(+): Supersonic!

Roots"

ΔLD (s) = d(s) + N p n(s) = 0 kn(s)

d(s)= −1 =

N p s s − z( 1)

s −λ1

( ) (s −λ2 )s2

+ 2ζωn s +ωn

sub- and supersonic flight"

•   Effect is analogous to Lβ effect"

Root Locus Gain = Yaw due to Roll Rate!

Ngày đăng: 04/07/2014, 19:29

TỪ KHÓA LIÊN QUAN