Stabilizing Lateral-Directional Motions" • Provide sufficient Lβ – to stabilize the spiral mode" • Provide sufficient Nr– to damp the Dutch roll mode" How can Lβ and Nr be adjusted arti
Trang 1Advanced Problems of
Robert Stengel, Aircraft Flight Dynamics
MAE 331, 2012 "
• Fourth-order dynamics"
– Steady-state response to control"
– Transfer functions"
– Frequency response"
– Root locus analysis of parameter
variations "
• Residualization"
• Roll-spiral oscillation"
Copyright 2012 by Robert Stengel All rights reserved For educational use only.!
http://www.princeton.edu/~stengel/MAE331.html !
http://www.princeton.edu/~stengel/FlightDynamics.html !
Stability-Axis Lateral-Directional
Equations"
Δr(t)
Δ β(t) Δp(t)
Δ φ(t)
$
%
&
&
&
&
&
'
(
) ) ) ) )
=
Nr Nβ Np 0
−1 Yβ
VN 0
g
VN
Lr Lβ Lp 0
$
%
&
&
&
&
&
&
&
'
(
) ) ) ) ) ) )
Δr(t)
Δβ(t)
Δp(t)
Δφ(t)
$
%
&
&
&
&
&
'
(
) ) ) ) ) +
~ 0 NδR 0
0 0 YδSF
VN
LδA ~ 0 0
$
%
&
&
&
&
&
&
'
(
) ) ) ) ) )
ΔδA ΔδR ΔδSF
$
%
&
&
&
' (
) ) )
Δx1
Δx2
Δx3
Δx4
"
#
$
$
$
%
&
' ' '
=
Δr
Δβ
Δp
Δφ
"
#
$
$
$
%
&
' ' '
=
Yaw Rate Perturbation Sideslip Angle Perturbation Roll Rate Perturbation Roll Angle Perturbation
"
#
$
$
$
%
&
' ' '
Δu1
Δu2
"
#
$
$
%
&
' '=
ΔδA
ΔδR
"
#
%
&
' =
Aileron Perturbation Rudder Perturbation
"
#
$
$
%
&
' '
• With idealized aileron and rudder effects (i.e., NδA = LδR = 0)"
Lateral-Directional
Characteristic Equation"
ΔLD(s) = s − ( λS) ( s − λR) ( s2+ 2 ζωns + ωn2)
• Typically factors into real spiral and roll roots
and an oscillatory pair of Dutch roll roots"
ΔLD(s) = s4+ Lp+ Nr+ Yβ
VN
#
$%
&
'( s 3
+ Nβ− LrNp+ LpYβ
VN + Nr
Yβ
VN + Lp
#
$%
&
'(
*
+
- s 2
+ Yβ
VN( LrNp− LpNr) + Lβ Np− g V
N
*
+,
-./ s + g V
N( LβNr− LrNβ)
= s4
+ a3s3
+ a2s2
+ a1s + a0= 0
Business Jet Example of
Lateral-Directional Characteristic Equation"
ΔLD(s) = s − 0.00883 ( ) ( s + 1.2 ) s2
+ 2 0.08 ( ) ( 1.39 ) s + 1.392
Slightly unstable Spiral!
Stable Roll!
Lightly damped Dutch roll!
Dutch roll!
Spiral!
Dutch roll!
Roll!
Trang 2Steady-State Response
Δx S = −F −1 G Δu S
Equilibrium Response of"
Δr SS
ΔβSS
#
$
%
%
&
'
( (= −
Yβ
V N
−Nβ
1 N r
#
$
%
%
%
&
'
( ( (
Yβ
V N N r + Nβ
* +
-
N δR
0
#
$
%
%
&
'
( (ΔδRSS
ΔrS= −
Yβ
VN NδR
%
&
)
*
Yβ
VN Nr+ Nβ
%
&
)
*
Δδ RS
Δ S= − NδR
Yβ
VN Nr+ Nβ
%
&
)
*
Δδ RS
• Equilibrium response to constant rudder"
• Steady yaw rate and sideslip angle are not zero"
• What is the corresponding ground track of the aircraft [ y(t) vs. x(t) ]?"
Equilibrium Response of
Roll-Spiral Model"
ΔpS= − LδA
Lp
Δ δAS
Δ φ (t)S= − LδA
L Δ δ ASdt
t
∫
Δp SS
ΔφSS
#
$
%
%
&
'
(
(= −
L p 0
#
$
%
%
&
'
( (
−1
L δ A
0
#
$
%
%
&
'
( (Δ
δA SS
Lp 0
1 0
!
"
#
#
$
%
&
&
−1
=
0 0
−1 Lp
!
"
#
#
$
%
&
&
0
but"
proportional to aileron"
rate, continually increases"
• Equilibrium state with constant aileron"
ΔpS= −Lp−1
LδAΔδAS
taken
alone"
Equilibrium Response of
4 th -Order Model"
• Equilibrium state with constant aileron, rudder, and side-force panel deflection"
ΔrS
ΔβS
ΔpS
ΔφS
$
%
&
&
&
&
&
'
(
) ) ) ) )
= −
−1 Yβ
g
VN
$
%
&
&
&
&
&
&
&
'
(
) ) ) ) ) ) )
−1
~ 0 NδR 0
0 0 YδSF
VN
$
%
&
&
&
&
&
&
'
(
) ) ) ) ) )
ΔδAS
ΔδRS
ΔδSFS
$
%
&
&
&
'
(
) ) )
Trang 3Equilibrium Response of the 4 th -Order
Lateral-Directional Model"
ΔyS = HxΔxS = −HxF−1G ΔuS • With H x =
Identity matrix "
• Observations"
– Steady-state roll rate is zero"
– Aileron and rudder commands produce steady-state yaw rate, sideslip angle, and roll
angle"
– Side force command produces steady-state roll angle but has no effect on steady-state
yaw rate or sideslip angle "
Δr S
ΔβS
Δp S
ΔφS
$
%
&
&
&
&
&
'
(
)
)
)
)
)
=
g
V N L δA Nβ −g
V N LβN δR 0
g
V N L δA N r g
V N L r N δR 0
Nβ+ N r Yβ
V N
,
-/ 0
1 L δA − Lβ+ L r Yβ
V N
,
-/ 0
1 N δR (L r Nβ− LβN r)Y δSF
V N
$
%
&
&
&
&
&
&
&
&
&
'
(
) ) ) ) ) ) ) ) )
g
V N(LβN r − L r Nβ)
ΔδAS
ΔδRS ΔδSFS
$
%
&
&
&
'
(
) ) )
Stability and Transient Response
Responses of Business Jet"
• Initial roll angle and rate have little effect on yaw rate
and sideslip angle responses"
• Initial yaw rate and sideslip angle have large effect on
roll rate and roll angle responses"
Initial !
yaw rate!
Initial !
sideslip angle!
Initial !
roll rate!
Initial !
roll angle!
Effects of Variation
in Primary Stability
Derivatives
Trang 4N β Effect on 4 th -Order
Roots!
numerator"
ΔLD(s) = d(s) + Nβn(s) = 0
kn(s)
d(s) = −1 =
Nβ( s − z1) ( s − z2)
s − λ1
( ) ( s − λ2) s2
+ 2 ζωns + ωn
N! > 0"
N! < 0"
– Increases Dutch roll natural frequency "
– Damping ratio decreases but remains
stable"
– Spiral mode drawn toward origin"
– Roll mode unchanged "
Root Locus Gain = Directional Stability!
Roll! Spiral!
Dutch Roll!
Dutch Roll!
Zero!
Zero!
Roots"
ΔLD(s) = d(s) + Nrn(s) = 0 kn(s)
d(s) = −1 =
Nr( s − z1) s2
+ 2 µνns + νn
s − λ1
( ) ( s − λ2) s2
+ 2ζωns + ωn2
• Negative Nr "
– Increases Dutch roll damping "
– Draws spiral and roll modes together drawn toward origin "
• Positive Nr destabilizes Dutch roll mode"
Root Locus Gain = Yaw Damping!
Roll! Spiral!
Zero!
Dutch Roll!
Dutch Roll!
Zero!
Zero!
Roots"
ΔLD(s) = d(s) + Lpn(s) = 0
kn(s)
d(s) = −1 =
Lps s2 + 2µνns + νn
s − λ1
( ) ( s − λ2) s2
+ 2ζωns + ωn
• Negative Lp "
– Decreases roll mode time constant"
– Draws spiral and roll modes together
drawn toward origin "
• Positive Lp destabilizes roll mode"
• Lphas negligible effect on spiral mode"
become positive at high angle of
attack"
Root Locus Gain = Roll Damping!
Roll! Zero! Spiral!
Dutch Roll & Zero!
Dutch Roll & Zero!
Coupling Stability Derivatives
and Their Effects
Trang 5Dihedral Effect : Roll Acceleration
Lβ ≈ Clβ ρV
2
2Ixx
$
%
& ' (
)Sb
Clβ ≈ C ( )lβ Wing+ C ( )lβ Wing − Fuselage+ C ( )lβ Vertical Tail
principal contributors"
Typically < 0 for stability!
Dihedral Effect : Roll Acceleration
ρV2
2Ixx
$
%&
' () Sb
• Dihedral and sweep effect"
β
Λ
' ()
* +,
• Tapered, trapezoidal, swept wing"
• High/low wing effect"
C lβ
b2
C lβ
( )Vertical Tail≈z vt
b( )C Yβ Vertical Tail
• Vertical tail effect"
• Negative Lβ "
– Stabilizes spiral and roll modes but "
– Destabilizes Dutch roll mode "
• Positive Lβ does the opposite"
Root Locus Gain = Dihedral Effect!
ΔLD(s) = d(s) + Lβ g V
N− Np
n(s) d(s) = −1 =
Lβ g V
N− Np
( ) ( s − z1)
s − λS
( ) ( s − λR) s2
+ 2ζωn DRs + ωn2DR
< 0"
L! > 0"
Bizjet Example!
ΔLD(s) =
s − 0.00883
( ) ( s + 1.2 ) s2
+ 2 0.08 ( ) ( 1.39 ) s + 1.392
Roll! Zero! Spiral!
Dutch Roll!
Dutch Roll!
Trang 6Stabilizing
Lateral-Directional Motions"
• Provide sufficient Lβ (–) to stabilize the spiral mode"
• Provide sufficient Nr(–) to damp the Dutch roll mode"
How can Lβ and Nr be adjusted artificially , i.e., by closed-loop control?!
Solar Impulse!
Fourth-Order Frequency Response
Responses of Business Jet"
to Rudder"
• Yawing response to aileron is not negligible"
• Yaw rate response is poorly characterized by the 2 nd -order model below the
Dutch roll natural frequency "
• Sideslip angle response is adequately characterized by the 2 nd -order model"
Aileron and Rudder"
Δr j( )ω
ΔδA j( )ω
Δβ( )jω
ΔδA j( )ω
Δr j( )ω
ΔδR j( )ω
Δβ( )jω
ΔδR j( )ω
Δr jω( )
Δδ R jω( )
Δβ jω( )
Δδ R jω( )
to Aileron"
• Roll response to rudder is not negligible"
• Roll rate response is marginally well characterized by the 2 nd -order model"
• Roll angle response is poorly characterized at low frequency by the 2 nd -order model"
Δp jω( )
Δδ R jω( )
Δφ jω( )
Δδ R jω( )
Δp jω( )
Δδ A jω( )
Δφ jω( )
Δδ A jω( )
Δp jω( )
Δδ A jω( )
Δφ jω( )
Δδ A jω( )
Aileron and Rudder"
Trang 7Frequency and Step
• Roll rate response is relatively benign"
• Ratio of roll angle to sideslip response
is important to the pilot"
• Yaw/sideslip sensitivity in the vicinity
of the Dutch roll natural frequency"
Δr j( )ω
Δ δA j( )ω
Δβ jω( )
Δδ A jω( )
Δp j( )ω
Δ δA j( )ω
Δφ jω( )
Δδ A jω( )
Δv t( )
Δy t( )
Δr t( )
Δp t( )
Δψ t( )
Δφ t( )
Frequency and Step Responses
to Rudder Input "
• Lightly damped yaw/sideslip response
would be hard to control precisely"
• Yaw response variability near and below the Dutch roll natural frequency"
Dutch roll natural frequency"
Δr jω( )
Δδ R jω ( )
Δβ jω ( )
Δδ R jω ( )
Δp jω( )
Δδ R jω ( )
Δφ jω ( )
Δδ R jω ( )
Δv t( ) Δy t( )
Δr t( )
Δp t( )
Δψ t( )
Δφ t( )
Order Reduction
by Residualization
Approximate Low-Order Response"
• Dynamic model order can be reduced when "
– One mode is stable and well-damped , and it and is faster than the other"
– The two modes are coupled "
Δxfast Δxslow
"
#
$
$
%
&
' ' =
Ffast Fslow fast
Ffast slow Fslow
"
#
$
$
%
&
' '
Δxfast
Δxslow
"
#
$
$
%
&
' ' +
Gfast
Gslow
"
#
$
$
%
&
' ' Δu
Δxf = FfΔxf + Fs fΔxs+ GfΔu Δxs = Ff sΔxf + FsΔxs + GsΔu
or!
Trang 8Residualization Provides an
Approximation for Low-Order Dynamics"
• Assume that fast mode reaches steady state on a time scale that
is short compared to the slow mode"
Δx f ≈ 0 ≈ F f Δx f + F s f Δx s + G f Δu
Δx s = F f s Δx f + F s Δx s + G s Δu
• Algebraic solution for Δxfast"
0 ≈ FfΔxf + Fs fΔxs+ GfΔu
FfΔxf = −Fs fΔxs− GfΔu
Δxf = −Ff−1 Fs f
Δxs+ GfΔu
• Substitute quasi-steady Δxfastin differential equation for Δxslow "
Δxs = −Ff s Ff−1 Fs f
Δxs+ GfΔu
& + FsΔxs+ GsΔu
= Fs− Ff sFf−1Fs f
#$ %&Δxs+ G #$ s− Ff sFf−1Gf%&Δu
• Residualized equation for Δxslow "
F's = Fs − Ff
s
Ff−1
Fs f
G's = Gs− Ff
s
Ff−1
Gf
where!
Residualization"
Residualized Roll-Spiral Mode"
• Assume that the Dutch roll mode is stable
and faster than the roll mode"
roll on the roll and spiral modes"
ΔxDR ΔxRS
"
#
$
$
%
&
'
0
ΔxRS
"
#
$
$
%
&
'
' =
"
#
$
$
%
&
' '
"
#
$
$
%
&
' ' +
"
#
$
$
%
&
' '
ΔδA ΔδR
"
#
&
'
"
#
$
$
%
&
' '
Residualized Roll-Spiral Mode"
faster than the roll mode"
on the roll and spiral modes"
ΔxDR= −FDR
−1
FRS DR
ΔxRS+ GDR
Δδ A
Δδ R
$
%
( )
* + , -,
/ , 0,
ΔxRS= FRSΔxRS− FDR RSFDR−1 FRS DR
ΔxRS+ GDR Δδ A
Δδ R
$
%
( )
* + , -,
/ , 0,
+ GRS Δδ A
Δδ R
$
%
( )
= F'RSΔxRS+ G'RS Δδ A
Δδ R
$
%
( )
Trang 9Model of the Residualized
Roll-Spiral Mode"
• 2nd-order approximation for roll and spiral modes"
Δp
#
$
% &
'
( = L p 0
1 0
#
$
% &
'
( Δp
Δφ
#
$
% &
' ( − L r Lβ
0 0
#
$
% &
' (
N r Nβ
−1 Yβ
V N
#
$
%
%
&
'
( (
−1
0 g
V N
#
$
%
%
&
'
( (
Δp
Δφ
#
$
% &
' ( +
NδA NδR
0 YδR
V N
#
$
%
%
&
'
( (
Δδ A
Δδ R
#
$
&
'
, -
/
0 1
2
+ LδA LδR
0 0
#
$
&
'
Δδ A
Δδ R
#
$
&
'
Δp
Δ φ
#
$
%
%
&
'
(
( =
Lp−
Np LrYβ
VN+ Lβ
+ ,
/ 0
Nβ+ NrYβ
VN
+ ,
/ 0
#
$
%
%
%
%
&
'
( ( ( (
g
VN( LrNβ− LβNr)
Nβ+ NrYβ
VN
+ ,
/ 0
#
$
%
%
%
%
&
'
( ( ( (
#
$
%
%
%
%
%
%
&
'
( ( ( ( ( (
Δp
Δφ
#
$
%
%
&
'
( ( +
= f11 f12
#
$
%
%
&
'
( (
Δp
Δφ
#
$
%
%
&
'
( ( +
Roots of the Residualized
Roll-Spiral Mode"
sI − F'RS = s 1 0
0 1
"
#
&
' − f11 f12
"
#
$
$
%
&
' '
= ΔRS res
= s2
− Lp− Np Lβ+ LrYβ/ VN
Nβ+ NrYβ/ VN
* +
-.
"
#
$
$
%
&
' '
s + g
VN
LβNr− LrNβ
Nβ+ NrYβ/ VN
* +
-.
= ( s − λS ) ( s − λR ) or s2
+ 2ζωns + ωn
• For the business jet model"
ΔRS res = s2+ 1.0894s − 0.0108 = 0
= ( s − 0.0098 ) ( s + 1.1 ) = s − ( λS) ( s − λR)
• Slightly unstable spiral mode"
• Similar to 4th-order roll-spiral results "
ΔLD(s) = ( s − 0.00883 ) ( s + 1.2 ) s2
+ 2 0.08 ( ) ( 1.39 ) s + 1.392
Oscillatory Roll-Spiral Mode"
ΔRS res = s − ( λS) ( s − λR) or ( s2+ 2ζωns + ωn2)RS
• The characteristic equation factors into
real or complex roots"
– Real roots are roll mode and spiral mode when "
LβNr > LrNβ and
#
$
' ( < 1
LβNr < LrNβ
– Complex roots produce roll-spiral oscillation
or lateral phugoid mode when!
Roll-Spiral Oscillation of a Lifting Reentry Vehicle"
Trang 10Next Time:
Flying Qualities Criteria
Reading
Supplemental Material
Equilibrium Response of
4 th -Order Model"
• Equilibrium state with constant aileron and
spiral wind perturbations"
ΔrSS
ΔβSS
ΔpSS
ΔφSS
$
%
&
&
&
&
&
'
(
) ) ) ) )
=
$
%
&
&
&
&
'
(
) ) ) )
Δδ ASS
Δδ RSS
ΔδSFSS
$
%
&
&
&
'
(
) ) )
• Observations"
– Aileron command"
– Rudder command"
– Side-force panel command"
– Steady-state roll rate is zero"
– Steady-state roll angle is bounded!
Effects of Variation
in Secondary Stability Derivatives
Trang 11Roll Acceleration
L r ≈ C l r
ρV N
2
2I xx
#
$
&
'
(Sb
= C l ˆr
b
2V N
#
$
&
'
ρV N2
2I xx
#
$
&
'
(Sb = C l ˆr
ρV N 4I xx
#
$
&
'
(Sb2
• Wing is the principal contributor"
– Differential lift induced by yaw rate "
Cl ˆr
( )Wing= ∂ ΔC ( l)Wing
∂ ˆr = −
CL
α
12
1+ 3λ 1+ λ
&
'
)
*
M2 cos2
Λ − 2
M2 cos2
Λ −1
&
'
* +
• Thin triangular wing"
Cl ˆr
( )Wing = π αN
9AR
• Vertical tail"
Cl ˆr
( )Vertical Tail = zvt
lvt
Cn ˆr
( )Vertical Tail
Roots"
ΔLD(s) = d(s) + LrNpn(s) = 0 kn(s)
d(s) = −1 =
LrNp( s − z1) ( s − z2)
s − λ1
( ) ( s − λ2) s2
+ 2ζωns + ωn2
(negative here)"
• Similar to Nβ effect on the Dutch
the spiral mode"
Root Locus Gain = Roll Due to Yaw Rate!
Yaw Acceleration
N p ≈ C n p
ρV N
2
2I zz
#
$%
&
'(Sb
= C n ˆp
b
2V N
#
$%
&
'(
ρV N
2
2I zz
#
$%
&
'(Sb = C n ˆp
ρV N
4I xx
#
$%
&
'(Sb
2
– Differential yaw moment induced by roll rate "
Cn ˆp
( )Wing= ∂ ( ΔCn)Wing
∂ ˆp =
1 12
1 + 3λ
1 + λ
$
%&
' ()
∂ CD Parasite, Wing
∂α ± CL
$
%
' (
• Thin triangular wing"
Cn ˆp
( )Wing= − π αN
9AR
• Vertical tail"
Cn ˆp
( )Vertical Tail = −2αN
lvt b
#
$%
&
'( ( ) Cnβ Vertical Tail
(–): Subsonic!
(+): Supersonic!
Roots"
ΔLD (s) = d(s) + N p n(s) = 0 kn(s)
d(s)= −1 =
N p s s − z( 1)
s −λ1
( ) (s −λ2 )s2
+ 2ζωn s +ωn
sub- and supersonic flight"
• Effect is analogous to Lβ effect"
Root Locus Gain = Yaw due to Roll Rate!