Advanced Problems of Longitudinal Dynamics Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012 " – Steady-state response to control" – Transfer functions" – Frequency response" –
Trang 1Advanced Problems of
Longitudinal Dynamics
Robert Stengel, Aircraft Flight Dynamics
MAE 331, 2012 "
– Steady-state response to control"
– Transfer functions"
– Frequency response"
– Root locus analysis of parameter
variations "
flight condition"
Copyright 2012 by Robert Stengel All rights reserved For educational use only.!
http://www.princeton.edu/~stengel/MAE331.html !
http://www.princeton.edu/~stengel/FlightDynamics.html !
Distinction Between
α = q
α ≠ 0 ≠ q; q = 0
! With no vertical motion of the
c.m., pitch rate and angle-of-attack rate are the same "
! With no pitching, vertical heaving (or plunging) motion of the c.m., produces angle-of-attack rate but
no pitch rate"
Vertical velocity distribution induced
by pitch rate!
Angle-of-Attack Rate
Has Two Effects "
! Pressure variations at wing
convect downstream,
arriving at tailΔt sec later"
! Lag of the downwash"
! Delayed
tail-lift/pitch-moment effect"
! Vertical force opposed by a
mass of air ( apparent
mass ) as well as airplane
mass"
! Vertical acceleration
produces added lift and
moment "
Flight Dynamics, pp 204-206, 284-285"
Δ q = M q Δq + MαΔα + M δEΔδE+ MαΔ α
Δ α = 1−L q
V N
%
&
)
*Δq − Lα
V N
( )Δα − LδE
V N
( )ΔδE − Lα
V N
( )Δ α
Δ q − Mα Δ α= M q Δq + MαΔ α+ MδEΔ δE
Δ α + Lα
V N
( )Δ α = 1−L q
V N
%
&
( )
*Δq − Lα
V N
( )Δ α − LδE
V N
( )Δ δE
1 −Mα
0 1+ Lα
V N
( )
#
$%
&
'(
#
$
%
%
%
&
'
( ( (
Δ q
Δ α
#
$
%
%
&
'
( (=
1−L q
V N
* +
- / − Lα
V N
( )
#
$
%
%
%
&
'
( ( (
Δq
Δ
#
$
%
%
&
'
( (+
M δE
− L δE VN
#
$
%
%
%
&
'
( ( ( ΔδE
Angle-of-Attack-Rate Effects Principally
Affect the Short-Period Mode"
! Lift and pitching moment proportional to angle-of-attack rate"
! Bring effects to left side"
! Vector-matrix form"
Trang 21 −Mα
0 1 + Lα
V N
( )
#
$%
&
'(
#
$
%
%
%
&
'
( ( (
−1
=
1 + Lα
V N
( )
#
$%
&
'( Mα
#
$
%
%
%
&
'
( ( (
1 + Lα
V N
( )
#
$%
&
'(
Δ q
Δ α
#
$
%
%
&
'
(
(=
1 −Mα
0 1+ Lα
V N
( )
#
$%
&
'(
#
$
%
%
%
&
'
( ( (
−1
1−Lq V
N
* +
- / − Lα
V N
( )
#
$
%
%
%
&
'
( ( (
Δq
Δ
#
$
%
%
&
'
( (+
M δE
− L δE VN
#
$
%
%
%
&
'
( ( (
Δ δE
1 2 33 4
3 3
5 6 33 7
3 3
! Inverse of the apparent mass matrix"
! Pre-multiply both sides by inverse"
Δ q
Δ α
#
$
% &
' (=
1+ Lα
V N
( )
#
$%
&
'( Mα
#
$
%
%
%
&
'
( ( ( 1+ Lα
V N
( )
#
$%
&
'(
1−Lq VN
* +
- / −Lα
VN
#
$
%
%
%
&
'
( ( (
Δq
Δ
#
$
% &
' (+
0 1 22 3 2
4 5 22 6 2
Δ q
Δ α
#
$
% &
'
( = 1 1+Lα
V N
( )
#
$%
&
'(
1+ Lα
V N
( )
#
$%
&
'(Mq+Mα *1−Lq VN +
-.
0 2
3
Lα
V N
( )
#
$%
&
'(Mα −Mα
Lα VN
( )
0 2
3 5 1−Lq VN
* +
α
VN
#
$
%
%
%
%
%
&
'
( ( ( ( (
Δq
Δα
#
$
% & ' (
+ 1+ Lα
V N
( )
#
$%
&
'(M δE−Mα
L δE
VN
− δE
VN
#
$
%
%
%
%
&
'
( ( ( (
ΔδE
0
1
7 7 7 7 7
2
7 7 7 7 7
3
4
7 7 7 7 7
5
7 7 7 7 7
! Multiply matrices"
! Substitute"
Simplification of
Angle-of-Attack-Rate Effects"
Δ q
Δ α
#
$
%
%
&
'
(
(
M q+Mα
{ } Mα−Mα
Lα
V N
( )
V N
( )
#
$
%
%
%
%
&
'
( ( ( (
Δq
Δ
#
$
%
%
&
'
( (+
M δ E−Mα
L δ E
V N
− L δ E
V N
#
$
%
%
%
%
&
'
( ( ( (
Δδ E
! Typically" L q and Lα have small effects for large aircraft*
M q and Mα are same order of magnitude and have more significant effects
! Neglecting" L q and Lα
* but not for small aircraft, e.g., R/C models and micro-UAVs"
2 nd -Degree Characteristic Polynomial with"
! Short-period characteristic polynomial"
! Damping is increased"
! Natural frequency is unaffected"
Δ s( ) =
s − M( q+Mα)
α −Mα Lα
V N
( )
$
%(
&
')
V N
( )
$
%(
&
')
= s − M$ ( q+Mα) &' s + Lα
V N
( )
$
%(
&
')− Mα −Mα Lα
V N
( )
$
%(
& ')
Δ s( )= s2
+ Lα
V N
( )− M( q+Mα)
$
%&
' ()s + Mα− M q Lα
V N
( )
$
%&
' ()
* + ,
- /
= s2 + 2ζωn s +ω n
2
= 0
L q and Lα 0
= s2
+ Lα
V N
( )− M( q+Mα)
#
$%
&
'(s + Mα− M( q+Mα)Lα
V N
( )
#
$%
&
'(+Mα
Lα
V N
( )
) +
,
Trang 3Linear, Time-Invariant Fourth-Order
Longitudinal Model "
Δ V (t)
Δ γ (t)
Δ q(t)
Δ α(t)
$
%
&
&
&
&
&
'
(
)
)
)
)
)
=
L V
V N 0 0 LαV N
V N 0 1 − αV N
$
%
&
&
&
&
&
&
&
'
(
) ) ) ) ) ) )
ΔV (t)
Δγ (t)
Δq(t)
Δα(t)
$
%
&
&
&
&
&
'
(
) ) ) ) ) +
$
%
&
&
&
&
&
'
(
) ) ) ) )
ΔδE(t) ΔδT (t) ΔδF(t)
$
%
&
&
&
'
(
) ) )
• Stability and control derivatives are defined at a
trimmed (equilibrium) flight condition "
Perturbations to the Trimmed Condition"
• Initial pitch rate [Δq(0)] = 0.1 rad/s" • Elevator step input [ΔδE(0)] = 1 deg"
• Small linear and nonlinear perturbations are virtually identical "
Steady-State Response
LTI Longitudinal Model"
ΔVSS
ΔγSS ΔqSS
Δ SS
$
%
&
&
&
&
&
'
(
) ) ) ) )
= −
LV
− V
$
%
&
&
&
&
&
&
&
'
(
) ) ) ) ) ) )
−1
0 0 L δF / VN
0 0 −L δF / VN
$
%
&
&
&
&
&
'
(
) ) ) ) )
ΔδESS ΔδTSS ΔδFSS
$
%
&
&
&
'
(
) ) )
ΔxSS = −F−1G ΔuSS
• How do we calculate the equilibrium response to control? "
Δx(t) = FΔx(t) + GΔu(t)
• For the longitudinal model "
Trang 4Algebraic Equation for
Equilibrium Response "
ΔV SS
ΔγSS
Δq SS
Δ SS
$
%
&
&
&
&
&
'
(
)
)
)
)
)
=
−gMδE Lα
V N
$
%&
'
D V Lα
V N − Dα
L V
V N
$
%&
' () M V
Lα
V N − Mα
L V
V N
$
%&
' () $% (DαM V − D V Mα)LδF / V N'(
−gMδE
L V
V N
$
%&
'
$
%
&
&
&
&
&
&
&
'
(
) ) ) ) ) ) )
g M V Lα
V N − Mα
L V
V N
ΔδESS
ΔδTSS ΔδFSS
$
%
&
&
&
'
(
) ) )
ΔV SS
Δ γSS
Δq SS
Δ SS
$
%
&
&
&
&
&
'
(
) ) ) ) )
=
0 0 0
$
%
&
&
&
&
'
(
) ) ) )
Δ δE SS
Δ δTSS
Δ δFSS
$
%
&
&
&
'
(
) ) )
• Roles of stability and control
derivatives identified"
• Result is a simple equation relating
input and output "
Be Counterintuitive"
ΔV SS = aΔδ E SS+ ( ) 0 ΔδTSS + bΔδ F SS
ΔγSS = cΔδ E SS + dΔδT SS + eΔδ F SS
Δq SS= ( ) 0 ΔE SS+ ( ) 0 ΔδTSS+ ( ) 0 Δδ FSS
ΔαSS = f Δδ E SS+ ( ) 0 ΔδTSS + gΔδ F SS
• Observations"
– Thrust command"
– Elevator and flap commands"
– Steady-state pitch rate is zero!
Δ θSS = Δ γSS + Δ αSS = c + f( )Δ δE SS + dΔδT SS + e + g( )Δ δF SS
• Steady-state pitch angle "
Effects of Stability Derivative
Longitudinal Modes
Primary and Coupling Blocks of the Fourth-Order Longitudinal Model"
FLon=
−DV −g 0 −Dα
L V
− V
#
$
%
%
%
%
%
%
%
&
'
( ( ( ( ( ( (
= FPh FSP
FPh FSP
#
$
%
%
&
'
( (
• Some stability derivatives appear only in primary blocks (D V , M q , Mα)"
– Effects are well-described by 2 nd -order models "
• Some stability derivatives appear only in coupling blocks (M V , Dα)"
– Effects are ignored by 2 nd -order models "
• Some stability derivatives appear in both (L V , Lα)"
– Require 4 th -order modeling"
Trang 5ΔMα Effect on 4 th -Order Roots !
Short
Period!
Short
Period!
Phugoid!
Phugoid!
ΔLon(s) = s 4
+ DV+Lα
V N − Mq
+ g − D( α)L V
V N + D V
Lα
V N − M q
( )− M q Lα
V N − Mαo
$
%&
' ()
2
+ Mq(Dα− g)L V
V N − DV Lα
V N
$
%&
' ()+ DαM V − DV Mαo
+ g MV Lα
V N − MαoL V
V N
( ) −ΔMαs2+ DV s + g L V
V N
≡ d(s)+ kn(s)
• Primary effect: The same as in the approximate short-period model"
• Numerator zeros "
– The same as the approximate phugoid mode characteristic polynomial "
– Effect of Mα variation on phugoid mode is small#
Short Period!
Short Period!
Phugoid!
Phugoid!
Direct Thrust Effect on Speed
Stability, T V"
∂T
∂V =
< 0, for propeller aircraft
≈ 0, for turbojet aircraft
> 0, for ramjet aircraft
#
$
%
&
%
∂T
∂V −
∂D
∂V > 0
T N − D N = C T N 1
2ρV N
2
S − C D N 1
2ρV N
2
S = 0
• Effect of velocity change "
• Small velocity perturbation grows if "
• Therefore"
– propeller is stabilizing for velocity change"
– turbojet has neutral effect"
– ramjet is destabilizing"
• Thrust line above or below center of mass induces a pitching moment"
• Aerodynamic and thrust pitching moments sensitive to velocity perturbation"
Martin XB-51!
McDonnell Douglas MD-11!
Consolidated PBY!
Fairchild-Republic A-10!
Trang 6• Negative ∂M/∂V (Pitch-down effect) tends to increase velocity"
• Positive ∂M/∂V (Pitch-up effect) tends to decrease velocity"
decreases thrust, producing a pitch-up moment"
– Up: Lake Amphibian, MD-11"
– Down: F6F, F8F, AD-1 " ∂ M thrust
∂T
Douglas AD-1!
Lake Amphibian!
Grumman F8F!
McDonnell Douglas !
MD-11!
Pitching Moment Due to Thrust, M V!
Roots"
• Large positive value produces
oscillatory phugoid instability "
• Large negative value produces
real phugoid divergence "
ΔLon (s) = s4
+ D V+ α
V N − M q
+ g − D( α )L V
V N + D V
Lα
V N − M q
( )− M q
Lα
V N − Mα
$
%&
' () 2
+ M q(Dα− g)L V
V N − D V Lα
V N
$
%&
' ()+ DαM V − D V Mα
gMαL V
V N+M V Dαs + g Lα
V N
€
Dα = 0
Short Period!
Phugoid!
frequency of the phugoid"
short-period"
• Lα /V N: Increased damping
of the short-period "
• Small effect on the phugoid
mode"
Short
Period!
Phugoid!
Pitch and Thrust Control Effects
Trang 7Longitudinal Model Transfer
Function Matrix (H x = I, H u = 0)"
H Lon (s) =
n δ E V
(s) n δT V
(s) n δ F V
(s)
n δ Eγ
(s) n δTγ
(s) n δ Fγ
(s)
n δ E q
(s) n δT q
(s) n δ F q
(s)
n δ Eα
(s) n δTα
(s) n δ Fα
(s)
$
%
&
&
&
&
&
&
'
(
) ) ) ) ) )
s2
+ 2ζPωn P s + ω n P
2
+ 2 ζSPωn SP s + ω n SP
2
ΔV (s)
Δγ (s)
Δq(s)
Δα(s)
$
%
&
&
&
&
&
'
(
) ) ) ) )
= H xA s( )G
ΔδE(s) ΔδT (s) ΔδF(s)
$
%
&
&
&
'
(
) ) )
=H Lon (s)
ΔδE(s) ΔδT (s) ΔδF(s)
$
%
&
&
&
'
(
) ) )
A Little More About Output Matrices"
• With H x = I and H u = 0!
Δy = Δx = H x Δx; then H x = I4
and
Δy1
Δy2
Δy3
Δy4
"
#
$
$
$
$
$
%
&
' ' ' ' '
=
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
"
#
$
$
$
$
%
&
' ' ' '
Δx1
Δx2
Δx3
Δx4
"
#
$
$
$
$
$
%
&
' ' ' ' '
ΔV
Δγ
Δq
Δα
"
#
$
$
$
$
$
%
&
' ' ' ' '
• Only output is ΔV !
Δy = ΔV= "# 1 0 0 0 $%
ΔV
Δ γ
Δq
Δ α
"
#
( ( ( ( (
$
%
) ) ) ) )
• ΔV and Δ α are measured"
Δy2
"
#
$
$
%
&
' '=
ΔV
Δ α
"
#
&
' =" 1 0 0 00 0 0 1
#
& '
ΔV
Δ γ
Δq
Δ α
"
#
$
$
$
$
$
%
&
' ' ' ' '
A Little More About Output Matrices"
• Output (measurement) of body-axis velocity and pitch rate and
angle"
• Transformation from [ΔV, Δγ, Δq, Δθ] to [Δu, Δw, Δq, Δα]"
Δu Δw Δq
Δθ
#
$
%
%
%
%
&
'
( ( ( (
=
cosαN 0 0 −V NsinαN
sinαN 0 0 V NcosαN
#
$
%
%
%
%
%
&
'
( ( ( ( (
ΔV
Δγ
Δq
Δα
#
$
%
%
%
%
%
&
'
( ( ( ( (
• Separate measurement
of state and control
perturbations!
Δy = Δx
Δu
"
#
%
&
' = H x Δx + H u Δu
Δy1
Δy2
Δy3
Δy4
Δy5
Δy6
"
#
$
$
$
$
$
$
$
$
%
&
' ' ' ' ' ' ' '
=
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
"
#
$
$
$
$
$
$
$
%
&
' ' ' ' ' ' '
ΔV
Δγ
Δq
Δα
"
#
$
$
$
$
$
%
&
' ' ' ' ' +
0 0
0 0
0 0
0 0
1 0
0 1
"
#
$
$
$
$
$
$
$
%
&
' ' ' ' ' ' '
Δδ E ΔδT
"
#
&
'
Elevator-to-Normal-Velocity Numerator"
H xAdj sI − F( Lon)G =# sinαN 0 0 V NcosαN %
n V (s) nγV (s) n q V (s) nαV (s)
n Vγ(s) nγ(s) n qγ(s) nαγ(s)
n V q (s) nγq (s) n q (s) nαq (s)
n Vα(s) nγα(s) n qα(s) nα(s)
#
$
( ( ( ( ( (
%
&
) ) ) ) ) )
0 0
M δ E
0
#
$
( ( ( (
%
&
) ) ) )
= n δ E w
(s)
• Transform though αNback to body axes "
n δE w (s)= # sinαN 0 0 V NcosαN
n qγ(s)
#
$
( ( ( ( ( (
%
&
) ) ) ) ) )
= M δE ( sinαN)n q V
(s)+ V( NcosαN)n qα(s)
• Scalar transfer function numerator "
Trang 8Elevator-to-Normal-Velocity
Transfer Function"
Δw(s)
Δδ E(s)=
n δ E w (s)
ΔLon (s) =
M δ E(s2 + 2ζωn s + ω n2)Approx Ph(s − z3)
s2+ 2ζωn s + ω n2
( )Ph(s2 + 2ζωn s + ω n2)SP
Elevator-to-
Response"
Δw(s)
ΔδE(s)=
n δ E w (s)
ΔLon(s)≈
M δ E s2 + 2ζωns + ωn
s2 + 2ζωns + ωn
( )Ph s2
+ 2ζωns + ωn
( )SP
0 dB/dec!
+40 dB/dec!
0 dB/dec!
–40 dB/dec!
–20 dB/dec!
• (n – q) = 1"
almost (but not quite) cancels phugoid
Elevator-to- Pitch-Rate "
Numerator and Transfer Function"
H xAdj sI − FLon( )G ="# 0 0 1 0 $%
n V (s) nγV (s) n q (s) nα(s)
n Vγ(s) nγ(s) n qγ(s) nαγ(s)
n V (s) nγq (s) n q (s) nα(s)
n V (s) n V (s) n V (s) n V (s)
"
#
( ( ( ( ( (
$
%
) ) ) ) ) )
0 0
M δ E
0
"
#
( ( ( (
$
%
) ) ) )
= n δ E q
(s)
Δq(s)
ΔδE(s)=
ΔLon (s)≈
MδE s(s − z1)(s − z2)
s2 + 2ζωn s + ω n2
+ 2ζωn s + ω n2
• Free s in numerator differentiates
pitch angle transfer function "
Elevator-to-Pitch-Rate Frequency Response"
+20 dB/dec!
+20 dB/dec! +40 dB/dec!
0 dB/dec!
–20 dB/dec!
Δq = 0 ( ) ΔδE + 0 ( ) ΔδT + 0 ( ) ΔδF
• (n – q) = 1"
• Negligible low-frequency response, except at phugoid natural frequency"
• High-frequency response well predicted by 2 nd -order model "
Δq(s)
Δδ E(s)=
n δ E q (s)
ΔLon (s)≈
M δ E s s − z( 1 ) (s − z2 )
s2
+ 2ζωn s + ω n
+ 2ζωn s + ω n
Trang 9Transfer Functions of Elevator Input
to Angle Output*"
Δθ(s)
ΔδE(s)=
n δEθ (s)
ΔLon (s); n δE
θ (s) = M δE$%&s + 1Tθ1'
(
2
$
%
( )
Δα(s)
ΔδE(s)=
n δEα(s)
ΔLon (s); n δE
α (s) = M δE s2 + 2ζωn s +ω n2
Δγ(s)
ΔδE(s)=
n δEγ (s)
ΔLon (s); n δE
V N%&'s + 1Tγ1(
)
*
• Elevator-to-Flight Path Angle transfer function "
• Elevator-to-Pitch Angle transfer function "
* Flying qualities notation for zero time constants"
Frequency Response of Angles to Elevator Input"
• Pitch angle frequency response (Δ θ = Δ γ + Δα)"
– Similar to flight path angle near phugoid natural frequency"
– Similar to angle of attack near short-period natural frequency"
ΔγSS = cΔδ E SS
Δ SS = f Δδ E SS
ΔθSS = c − f( ) Δδ ESS
Transfer Functions of Thrust
Input to Angle Output"
Δθ(s)
ΔδT (s)=
nδθT (s)
ΔLon (s); nδT
θ
(s) = TδT$%&s + 1TθT'()
Δα(s)
ΔδT (s)=
n δTα
(s)
ΔLon (s); n δT
α (s) = T δT s s + 1Tα
T
$
%&
' ()
Δγ (s)
ΔδT (s)=
n δTγ
(s)
ΔLon (s); n δT
γ (s) = T δT L V
V N s
2
+ 2ζωn s + ω n2
• Thrust-to-Flight Path Angle transfer function "
• Thrust-to-Pitch Angle transfer function "
Frequency Response of Angles
to Thrust Input"
• Primarily effects flight path angle and low-frequency pitch angle "
Trang 10Gain and Phase Margins:
The Nichols Chart
Nichols Chart:
Gain vs Phase Angle"
• Bode Plot"
frequency not shown"
20 log 10 AR(jω) "
and PM "
H blue ( jω ) = 10
jω + 10
"
#
%
&
100 2
jω
( ) 2 + 2 0.1 ( ) ( 100 ) ( )jω + 100 2
"
#
&
'
H green ( jω ) = 10
2
jω
( ) 2 + 2 0.1 ( ) ( ) 10 ( )jω + 10 2
"
#
&
jω + 100
"
#
%
&
Trang 11Gain and Phase Margins in
Elevator-to-Pitch-Angle
Bode Plot"
Elevator-to-Pitch-Angle Nichols Chart"
• Gain Margin: Amplitude ratio below 0 dB
when phase angle = 180°"
• Phase Margin: Phase angle above –180°
when amplitude ratio = 0 dB"
Pilot-Vehicle Interactions
Pilot Inputs to Control"
* p 421-425, Flight Dynamics"
Effect of Pilot Dynamics on
Pilot Transfer Function = Δu s( )
Δ ε ( )s = K P
1 / T P
s +1 / T = K P
1 / 0.25
s +1 / 0.25
• Pilot introduces neuromuscular lag while closing the control loop"
• Example "
– Model the lag by a 1 st -order time constant, T P, of 0.25 s"
– Pilot s gain, K P, is either 1 or 2 "