1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Aircraft Flight Dynamics Robert F. Stengel Lecture18 Advanced Longitudinal Dynamics

16 248 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 1,42 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Advanced Problems of Longitudinal Dynamics Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012 " – Steady-state response to control" – Transfer functions" – Frequency response" –

Trang 1

Advanced Problems of

Longitudinal Dynamics

Robert Stengel, Aircraft Flight Dynamics

MAE 331, 2012 "

–   Steady-state response to control"

–   Transfer functions"

–   Frequency response"

–   Root locus analysis of parameter

variations "

flight condition"

Copyright 2012 by Robert Stengel All rights reserved For educational use only.!

http://www.princeton.edu/~stengel/MAE331.html !

http://www.princeton.edu/~stengel/FlightDynamics.html !

Distinction Between

α = q

α ≠ 0 ≠ q; q = 0

!  With no vertical motion of the

c.m., pitch rate and angle-of-attack rate are the same "

!  With no pitching, vertical heaving (or plunging) motion of the c.m., produces angle-of-attack rate but

no pitch rate"

Vertical velocity distribution induced

by pitch rate!

Angle-of-Attack Rate

Has Two Effects "

!  Pressure variations at wing

convect downstream,

arriving at tailΔt sec later"

!  Lag of the downwash"

!  Delayed

tail-lift/pitch-moment effect"

!  Vertical force opposed by a

mass of air ( apparent

mass ) as well as airplane

mass"

!  Vertical acceleration

produces added lift and

moment "

Flight Dynamics, pp 204-206, 284-285"

Δ q = M q Δq + MαΔα + M δEΔδE+ MαΔ  α

Δ  α = 1−L q

V N

%

&

)

*Δq − Lα

V N

( )Δα − LδE

V N

( )ΔδE − Lα 

V N

( )Δ  α

Δ q − Mα  Δ  α= M q Δq + MαΔ α+ MδEΔ δE

Δ  α + Lα 

V N

( )Δ  α = 1−L q

V N

%

&

( )

*Δq − Lα

V N

( )Δ α − LδE

V N

( )Δ δE

1 −Mα 

0 1+ Lα 

V N

( )

#

$%

&

'(

#

$

%

%

%

&

'

( ( (

Δ q

Δ  α

#

$

%

%

&

'

( (=

1−L q

V N

* +

- / − Lα

V N

( )

#

$

%

%

%

&

'

( ( (

Δq

Δ

#

$

%

%

&

'

( (+

M δE

L δE VN

#

$

%

%

%

&

'

( ( ( ΔδE

Angle-of-Attack-Rate Effects Principally

Affect the Short-Period Mode"

!  Lift and pitching moment proportional to angle-of-attack rate"

!  Bring effects to left side"

!  Vector-matrix form"

Trang 2

1 −Mα

0 1 + Lα

V N

( )

#

$%

&

'(

#

$

%

%

%

&

'

( ( (

−1

=

1 + Lα 

V N

( )

#

$%

&

'( Mα

#

$

%

%

%

&

'

( ( (

1 + Lα 

V N

( )

#

$%

&

'(

Δ q

Δ  α

#

$

%

%

&

'

(

(=

1 −Mα 

0 1+ Lα 

V N

( )

#

$%

&

'(

#

$

%

%

%

&

'

( ( (

−1

1−Lq V

N

* +

- / − Lα

V N

( )

#

$

%

%

%

&

'

( ( (

Δq

Δ

#

$

%

%

&

'

( (+

M δE

L δE VN

#

$

%

%

%

&

'

( ( (

Δ δE

1 2 33 4

3 3

5 6 33 7

3 3

!  Inverse of the apparent mass matrix"

!  Pre-multiply both sides by inverse"

Δ q

Δ  α

#

$

% &

' (=

1+ Lα 

V N

( )

#

$%

&

'( Mα 

#

$

%

%

%

&

'

( ( ( 1+ Lα 

V N

( )

#

$%

&

'(

1−Lq VN

* +

- / −Lα

VN

#

$

%

%

%

&

'

( ( (

Δq

Δ

#

$

% &

' (+

0 1 22 3 2

4 5 22 6 2

Δ q

Δ  α

#

$

% &

'

( = 1 1+Lα

V N

( )

#

$%

&

'(

1+ Lα

V N

( )

#

$%

&

'(Mq+Mα *1−Lq VN +

-.

0 2

3

Lα 

V N

( )

#

$%

&

'(Mα −Mα 

Lα VN

( )

0 2

3 5 1−Lq VN

* +

α

VN

#

$

%

%

%

%

%

&

'

( ( ( ( (

Δq

Δα

#

$

% & ' (

+ 1+ Lα

V N

( )

#

$%

&

'(M δEMα 

L δE

VN

δE

VN

#

$

%

%

%

%

&

'

( ( ( (

ΔδE

0

1

7 7 7 7 7

2

7 7 7 7 7

3

4

7 7 7 7 7

5

7 7 7 7 7

!  Multiply matrices"

!  Substitute"

Simplification of

Angle-of-Attack-Rate Effects"

Δ q

Δ  α

#

$

%

%

&

'

(

( 

M q+Mα 

{ } Mα−Mα 

Lα

V N

( )

V N

( )

#

$

%

%

%

%

&

'

( ( ( (

Δq

Δ

#

$

%

%

&

'

( (+

M δ EMα 

L δ E

V N

L δ E

V N

#

$

%

%

%

%

&

'

( ( ( (

Δδ E

!  Typically" L q and Lα have small effects for large aircraft*

M q and Mα are same order of magnitude and have more significant effects

!  Neglecting" L q and Lα

* but not for small aircraft, e.g., R/C models and micro-UAVs"

2 nd -Degree Characteristic Polynomial with"

!  Short-period characteristic polynomial"

!  Damping is increased"

!  Natural frequency is unaffected"

Δ s( ) =

s − M( q+Mα)

α −Mα Lα

V N

( )

$

%(

&

')

V N

( )

$

%(

&

')

= s − M$ ( q+Mα) &' s + Lα

V N

( )

$

%(

&

')− Mα −Mα Lα

V N

( )

$

%(

& ')

Δ s( )= s2

+ Lα

V N

( )− M( q+Mα)

$

%&

' ()s + Mα− M q Lα

V N

( )

$

%&

' ()

* + ,

- /

= s2 + 2ζωn s +ω n

2

= 0

L q and Lα  0

= s2

+ Lα

V N

( )− M( q+Mα)

#

$%

&

'(s + Mα− M( q+Mα)Lα

V N

( )

#

$%

&

'(+Mα

Lα

V N

( )

) +

,

Trang 3

Linear, Time-Invariant Fourth-Order

Longitudinal Model "

Δ V (t)

Δ γ (t)

Δ q(t)

Δ α(t)

$

%

&

&

&

&

&

'

(

)

)

)

)

)

=

L V

V N 0 0 LαV N

V N 0 1 − αV N

$

%

&

&

&

&

&

&

&

'

(

) ) ) ) ) ) )

ΔV (t)

Δγ (t)

Δq(t)

Δα(t)

$

%

&

&

&

&

&

'

(

) ) ) ) ) +

$

%

&

&

&

&

&

'

(

) ) ) ) )

ΔδE(t) ΔδT (t) ΔδF(t)

$

%

&

&

&

'

(

) ) )

•  Stability and control derivatives are defined at a

trimmed (equilibrium) flight condition "

Perturbations to the Trimmed Condition"

•   Initial pitch rate [Δq(0)] = 0.1 rad/s" •Elevator step input [ΔδE(0)] = 1 deg"

•  Small linear and nonlinear perturbations are virtually identical "

Steady-State Response

LTI Longitudinal Model"

ΔVSS

ΔγSS ΔqSS

Δ SS

$

%

&

&

&

&

&

'

(

) ) ) ) )

= −

LV

V

$

%

&

&

&

&

&

&

&

'

(

) ) ) ) ) ) )

−1

0 0 L δF / VN

0 0 −L δF / VN

$

%

&

&

&

&

&

'

(

) ) ) ) )

ΔδESS ΔδTSS ΔδFSS

$

%

&

&

&

'

(

) ) )

ΔxSS = −F−1G ΔuSS

•  How do we calculate the equilibrium response to control? "

Δx(t) = FΔx(t) + GΔu(t)

•  For the longitudinal model "

Trang 4

Algebraic Equation for

Equilibrium Response "

ΔV SS

ΔγSS

Δq SS

Δ SS

$

%

&

&

&

&

&

'

(

)

)

)

)

)

=

−gMδE Lα

V N

$

%&

'

D V Lα

V N − Dα

L V

V N

$

%&

' () M V

Lα

V N − Mα

L V

V N

$

%&

' () $% (DαM V − D V Mα)LδF / V N'(

−gMδE

L V

V N

$

%&

'

$

%

&

&

&

&

&

&

&

'

(

) ) ) ) ) ) )

g M V Lα

V N − Mα

L V

V N

ΔδESS

ΔδTSS ΔδFSS

$

%

&

&

&

'

(

) ) )

ΔV SS

Δ γSS

Δq SS

Δ SS

$

%

&

&

&

&

&

'

(

) ) ) ) )

=

0 0 0

$

%

&

&

&

&

'

(

) ) ) )

Δ δE SS

Δ δTSS

Δ δFSS

$

%

&

&

&

'

(

) ) )

• Roles of stability and control

derivatives identified"

• Result is a simple equation relating

input and output "

Be Counterintuitive"

ΔV SS = aΔδ E SS+ ( ) 0 ΔδTSS + bΔδ F SS

ΔγSS = cΔδ E SS + dΔδT SS + eΔδ F SS

Δq SS= ( ) 0 ΔE SS+ ( ) 0 ΔδTSS+ ( ) 0 Δδ FSS

ΔαSS = f Δδ E SS+ ( ) 0 ΔδTSS + gΔδ F SS

•  Observations"

–   Thrust command"

–   Elevator and flap commands"

–   Steady-state pitch rate is zero!

Δ θSS = Δ γSS + Δ αSS = c + f( )Δ δE SS + dΔδT SS + e + g( )Δ δF SS

•  Steady-state pitch angle "

Effects of Stability Derivative

Longitudinal Modes

Primary and Coupling Blocks of the Fourth-Order Longitudinal Model"

FLon=

−DV −g 0 −Dα

L V

V

#

$

%

%

%

%

%

%

%

&

'

( ( ( ( ( ( (

= FPh FSP

FPh FSP

#

$

%

%

&

'

( (

•  Some stability derivatives appear only in primary blocks (D V , M q , Mα)"

–   Effects are well-described by 2 nd -order models "

•  Some stability derivatives appear only in coupling blocks (M V , Dα)"

–   Effects are ignored by 2 nd -order models "

•  Some stability derivatives appear in both (L V , Lα)"

–   Require 4 th -order modeling"

Trang 5

ΔMα Effect on 4 th -Order Roots !

Short

Period!

Short

Period!

Phugoid!

Phugoid!

ΔLon(s) = s 4

+ DV+Lα

V N − Mq

+ g − D( α)L V

V N + D V

Lα

V N − M q

( )− M q Lα

V N − Mαo

$

%&

' ()

2

+ Mq(Dα− g)L V

V N − DV Lα

V N

$

%&

' ()+ DαM V − DV Mαo

+ g MV Lα

V N − MαoL V

V N

( ) −ΔMαs2+ DV s + g L V

V N

≡ d(s)+ kn(s)

•  Primary effect: The same as in the approximate short-period model"

•  Numerator zeros "

–   The same as the approximate phugoid mode characteristic polynomial "

–   Effect of Mα variation on phugoid mode is small#

Short Period!

Short Period!

Phugoid!

Phugoid!

Direct Thrust Effect on Speed

Stability, T V"

T

V =

< 0, for propeller aircraft

≈ 0, for turbojet aircraft

> 0, for ramjet aircraft

#

$

%

&

%

T

V

D

V > 0

T N − D N = C T N 1

V N

2

S − C D N 1

V N

2

S = 0

•   Effect of velocity change "

•   Small velocity perturbation grows if "

•  Therefore"

–   propeller is stabilizing for velocity change"

–   turbojet has neutral effect"

–   ramjet is destabilizing"

•  Thrust line above or below center of mass induces a pitching moment"

•  Aerodynamic and thrust pitching moments sensitive to velocity perturbation"

Martin XB-51!

McDonnell Douglas MD-11!

Consolidated PBY!

Fairchild-Republic A-10!

Trang 6

•   Negative ∂M/∂V (Pitch-down effect) tends to increase velocity"

•   Positive ∂M/∂V (Pitch-up effect) tends to decrease velocity"

decreases thrust, producing a pitch-up moment"

–   Up: Lake Amphibian, MD-11"

–   Down: F6F, F8F, AD-1 " ∂ M thrust

∂T

Douglas AD-1!

Lake Amphibian!

Grumman F8F!

McDonnell Douglas !

MD-11!

Pitching Moment Due to Thrust, M V!

Roots"

•  Large positive value produces

oscillatory phugoid instability "

•  Large negative value produces

real phugoid divergence "

ΔLon (s) = s4

+ D V+ α

V N − M q

+ g − D( α )L V

V N + D V

Lα

V N − M q

( )− M q

Lα

V N − Mα

$

%&

' () 2

+ M q(Dα− g)L V

V N − D V Lα

V N

$

%&

' ()+ DαM V − D V Mα

gMαL V

V N+M V Dαs + g Lα

V N

Dα = 0

Short Period!

Phugoid!

frequency of the phugoid"

short-period"

•  Lα /V N: Increased damping

of the short-period "

•  Small effect on the phugoid

mode"

Short

Period!

Phugoid!

Pitch and Thrust Control Effects

Trang 7

Longitudinal Model Transfer

Function Matrix (H x = I, H u = 0)"

H Lon (s) =

n δ E V

(s) n δT V

(s) n δ F V

(s)

n δ Eγ

(s) n δTγ

(s) n δ Fγ

(s)

n δ E q

(s) n δT q

(s) n δ F q

(s)

n δ Eα

(s) n δTα

(s) n δ Fα

(s)

$

%

&

&

&

&

&

&

'

(

) ) ) ) ) )

s2

+ 2ζPωn P s + ω n P

2

+ 2 ζSPωn SP s + ω n SP

2

ΔV (s)

Δγ (s)

Δq(s)

Δα(s)

$

%

&

&

&

&

&

'

(

) ) ) ) )

= H xA s( )G

ΔδE(s) ΔδT (s) ΔδF(s)

$

%

&

&

&

'

(

) ) )

=H Lon (s)

ΔδE(s) ΔδT (s) ΔδF(s)

$

%

&

&

&

'

(

) ) )

A Little More About Output Matrices"

•   With H x = I and H u = 0!

Δy = Δx = H x Δx; then H x = I4

and

Δy1

Δy2

Δy3

Δy4

"

#

$

$

$

$

$

%

&

' ' ' ' '

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

"

#

$

$

$

$

%

&

' ' ' '

Δx1

Δx2

Δx3

Δx4

"

#

$

$

$

$

$

%

&

' ' ' ' '

ΔV

Δγ

Δq

Δα

"

#

$

$

$

$

$

%

&

' ' ' ' '

•   Only output is ΔV !

Δy = ΔV= "# 1 0 0 0 $%

ΔV

Δ γ

Δq

Δ α

"

#

( ( ( ( (

$

%

) ) ) ) )

•   ΔV and Δ α are measured"

Δy2

"

#

$

$

%

&

' '=

ΔV

Δ α

"

#

&

' =" 1 0 0 00 0 0 1

#

& '

ΔV

Δ γ

Δq

Δ α

"

#

$

$

$

$

$

%

&

' ' ' ' '

A Little More About Output Matrices"

•   Output (measurement) of body-axis velocity and pitch rate and

angle"

•   Transformation from [ΔV, Δγ, Δq, Δθ] to [Δu, Δw, Δq, Δα]"

Δu Δw Δq

Δθ

#

$

%

%

%

%

&

'

( ( ( (

=

cosαN 0 0 −V NsinαN

sinαN 0 0 V NcosαN

#

$

%

%

%

%

%

&

'

( ( ( ( (

ΔV

Δγ

Δq

Δα

#

$

%

%

%

%

%

&

'

( ( ( ( (

•   Separate measurement

of state and control

perturbations!

Δy = Δx

Δu

"

#

%

&

' = H x Δx + H u Δu

Δy1

Δy2

Δy3

Δy4

Δy5

Δy6

"

#

$

$

$

$

$

$

$

$

%

&

' ' ' ' ' ' ' '

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

"

#

$

$

$

$

$

$

$

%

&

' ' ' ' ' ' '

ΔV

Δγ

Δq

Δα

"

#

$

$

$

$

$

%

&

' ' ' ' ' +

0 0

0 0

0 0

0 0

1 0

0 1

"

#

$

$

$

$

$

$

$

%

&

' ' ' ' ' ' '

Δδ E ΔδT

"

#

&

'

Elevator-to-Normal-Velocity Numerator"

H xAdj sI − F( Lon)G =# sinαN 0 0 V NcosαN %

n V (s) nγV (s) n q V (s) nαV (s)

n Vγ(s) nγ(s) n qγ(s) nαγ(s)

n V q (s) nγq (s) n q (s) nαq (s)

n Vα(s) nγα(s) n qα(s) nα(s)

#

$

( ( ( ( ( (

%

&

) ) ) ) ) )

0 0

M δ E

0

#

$

( ( ( (

%

&

) ) ) )

= n δ E w

(s)

•  Transform though αNback to body axes "

n δE w (s)= # sinαN 0 0 V NcosαN

n qγ(s)

#

$

( ( ( ( ( (

%

&

) ) ) ) ) )

= M δE ( sinαN)n q V

(s)+ V( NcosαN)n qα(s)

•   Scalar transfer function numerator "

Trang 8

Elevator-to-Normal-Velocity

Transfer Function"

Δw(s)

Δδ E(s)=

n δ E w (s)

ΔLon (s) =

M δ E(s2 + 2ζωn s + ω n2)Approx Ph(s − z3)

s2+ 2ζωn s + ω n2

( )Ph(s2 + 2ζωn s + ω n2)SP

Elevator-to-

Response"

Δw(s)

ΔδE(s)=

n δ E w (s)

ΔLon(s)

M δ E s2 + 2ζωns + ωn

s2 + 2ζωns + ωn

( )Ph s2

+ 2ζωns + ωn

( )SP

0 dB/dec!

+40 dB/dec!

0 dB/dec!

–40 dB/dec!

–20 dB/dec!

•  (n – q) = 1"

almost (but not quite) cancels phugoid

Elevator-to- Pitch-Rate "

Numerator and Transfer Function"

H xAdj sI − FLon( )G ="# 0 0 1 0 $%

n V (s) nγV (s) n q (s) nα(s)

n Vγ(s) nγ(s) n qγ(s) nαγ(s)

n V (s) nγq (s) n q (s) nα(s)

n V (s) n V (s) n V (s) n V (s)

"

#

( ( ( ( ( (

$

%

) ) ) ) ) )

0 0

M δ E

0

"

#

( ( ( (

$

%

) ) ) )

= n δ E q

(s)

Δq(s)

ΔδE(s)=

ΔLon (s)

MδE s(s − z1)(s − z2)

s2 + 2ζωn s + ω n2

+ 2ζωn s + ω n2

•  Free s in numerator differentiates

pitch angle transfer function "

Elevator-to-Pitch-Rate Frequency Response"

+20 dB/dec!

+20 dB/dec! +40 dB/dec!

0 dB/dec!

–20 dB/dec!

Δq = 0 ( ) ΔδE + 0 ( ) ΔδT + 0 ( ) ΔδF

•  (n – q) = 1"

•  Negligible low-frequency response, except at phugoid natural frequency"

•  High-frequency response well predicted by 2 nd -order model "

Δq(s)

Δδ E(s)=

n δ E q (s)

ΔLon (s)

M δ E s s − z( 1 ) (s − z2 )

s2

+ 2ζωn s + ω n

+ 2ζωn s + ω n

Trang 9

Transfer Functions of Elevator Input

to Angle Output*"

Δθ(s)

ΔδE(s)=

n δEθ (s)

ΔLon (s); n δE

θ (s) = M δE$%&s + 1Tθ1'

(

2

$

%

( )

Δα(s)

ΔδE(s)=

n δEα(s)

ΔLon (s); n δE

α (s) = M δE s2 + 2ζωn s +ω n2

Δγ(s)

ΔδE(s)=

n δEγ (s)

ΔLon (s); n δE

V N%&'s + 1Tγ1(

)

*

•  Elevator-to-Flight Path Angle transfer function "

•  Elevator-to-Pitch Angle transfer function "

* Flying qualities notation for zero time constants"

Frequency Response of Angles to Elevator Input"

•  Pitch angle frequency response (Δ θ = Δ γ + Δα)"

–  Similar to flight path angle near phugoid natural frequency"

–  Similar to angle of attack near short-period natural frequency"

ΔγSS = cΔδ E SS

Δ SS = f Δδ E SS

ΔθSS = c − f( ) Δδ ESS

Transfer Functions of Thrust

Input to Angle Output"

Δθ(s)

ΔδT (s)=

nδθT (s)

ΔLon (s); nδT

θ

(s) = TδT$%&s + 1TθT'()

Δα(s)

ΔδT (s)=

n δTα

(s)

ΔLon (s); n δT

α (s) = T δT s s + 1Tα

T

$

%&

' ()

Δγ (s)

ΔδT (s)=

n δTγ

(s)

ΔLon (s); n δT

γ (s) = T δT L V

V N s

2

+ 2ζωn s + ω n2

•  Thrust-to-Flight Path Angle transfer function "

•  Thrust-to-Pitch Angle transfer function "

Frequency Response of Angles

to Thrust Input"

•  Primarily effects flight path angle and low-frequency pitch angle "

Trang 10

Gain and Phase Margins:

The Nichols Chart

Nichols Chart: 


Gain vs Phase Angle"

•  Bode Plot"

frequency not shown"

20 log 10 AR(jω) "

and PM "

H blue ( jω ) = 10

jω + 10

"

#

%

&

100 2

( ) 2 + 2 0.1 ( ) ( 100 ) ( ) + 100 2

"

#

&

'

H green ( jω ) = 10

2

( ) 2 + 2 0.1 ( ) ( ) 10 ( ) + 10 2

"

#

&

jω + 100

"

#

%

&

Trang 11

Gain and Phase Margins in

Elevator-to-Pitch-Angle

Bode Plot"

Elevator-to-Pitch-Angle Nichols Chart"

•   Gain Margin: Amplitude ratio below 0 dB

when phase angle = 180°"

•   Phase Margin: Phase angle above –180°

when amplitude ratio = 0 dB"

Pilot-Vehicle Interactions

Pilot Inputs to Control"

* p 421-425, Flight Dynamics"

Effect of Pilot Dynamics on

Pilot Transfer Function = Δu s( )

Δ ε ( )s = K P

1 / T P

s +1 / T = K P

1 / 0.25

s +1 / 0.25

•   Pilot introduces neuromuscular lag while closing the control loop"

•  Example "

–   Model the lag by a 1 st -order time constant, T P, of 0.25 s"

–   Pilot s gain, K P, is either 1 or 2 "

Ngày đăng: 04/07/2014, 19:29

TỪ KHÓA LIÊN QUAN