Linearized Lateral-Directional and roll modes" derivatives" Copyright 2012 by Robert Stengel.. All rights reserved... but are the off-diagonal blocks really small?!. Dassault Rafale!.
Trang 1Linearized Lateral-Directional
and roll modes"
derivatives"
Copyright 2012 by Robert Stengel All rights reserved For educational use only.!
http://www.princeton.edu/~stengel/MAE331.html !
http://www.princeton.edu/~stengel/FlightDynamics.html !
6-Component " Lateral-Directional Equations of Motion"
State Vector, 6 components!
Nonlinear Dynamic Equations!
v = Y / m + gsinφ cosθ − ru + pw
y I= cosθ sinψ ( )u + cosφ cosψ + sinφ sinθ sinψ( )v + − sinφ cosψ + cosφ sinθ sinψ( )w
p = I zz L + I xz N − I xz(I yy − I xx − I zz)p + I xz
2
+ I zz(I zz − I yy)
2
r = I xz L + I xx N − I xz(I yy − I xx − I zz)r + I xz
2
+ I xx(I xx − I yy)
2
φ = p + qsinφ + r cosφ( ) tanθ
ψ = q sinφ + r cosφ( ) secθ
x1
x2
x3
x4
x5
x6
!
"
#
#
#
#
#
$
%
&
&
&
&
&
= xLD6 =
v y p r
φ ψ
!
"
#
#
#
#
$
%
&
&
&
&
&
=
Side Velocity Crossrange Body − Axis Roll Rate Body − Axis Yaw Rate Roll Angle about Body x Axis Yaw Angle about Inertial x Axis
!
"
#
#
#
#
$
%
&
&
&
&
&
Douglas A-4!
4- Component "
Lateral-Directional Equations of Motion"
State Vector, 4 components!
Nonlinear Dynamic Equations, neglecting crossrange and yaw angle!
v = Y / m + gsinφ cosθ − ru + pw
p = I zz L + I xz N − I xz(I yy − I xx − I zz)p + I xz
2
+ I zz(I zz − I yy)
2
r = I xz L + I xx N − I xz(I yy − I xx − I zz)r + I xz
2
+ I xx(I xx − I yy)
2
φ = p + qsinφ + r cosφ( )tanθ
x1
x2
x3
x4
!
"
#
#
#
#
#
$
%
&
&
&
&
&
= xLD4 =
v p r
φ
!
"
#
#
#
#
#
$
%
&
&
&
&
&
=
Side Velocity Body − Axis Roll Rate Body − Axis Yaw Rate Roll Angle about Body x Axis
!
"
#
#
#
#
#
$
%
&
&
&
&
&
Eurofighter Typhoon!
Lateral-Directional Equations
of Motion Assuming Steady, Level Longitudinal Flight"
Nonlinear dynamic equations, assuming steady, level, flight (longitudinal variables are constant )!
v = YB / m + gsinφ cosθN − ruN + pwN
= YB / m + gsinφ cosαN − ruN+ pwN
p = I ( zzLB+ IxzNB) ( IxxIzz − Ixz2 )
r = I ( xzLB+ IxxNB) ( IxxIzz− Ixz2)
φ = p+ r cosφ ( ) tanθN = p + r cos ( φ ) tanαN
q N= 0
γN= 0
θN =αN
Lockheed F-117!
Trang 2Lateral-Directional Force and
Moments"
1
2 ρNVN
2
S; Body − Axis Side Force
2 ρNVN
2
Sb; Body − Axis Rolling Moment
2 ρNVN
2
Sb; Body − Axis Yawing Moment
Linearized Equations
of Motion
Body-Axis Perturbation
Equations of Motion"
Δ v(t)
Δp(t)
Δr(t)
Δ φ(t)
#
$
%
%
%
%
%
&
'
(
(
(
(
(
=
∂ f1
∂ v
∂ f1
∂ f1
∂ r
∂ f1
∂φ
∂ f2
∂ v
∂ f2
∂ f2
∂ r
∂ f2
∂φ
∂ f3
∂ v
∂ f3
∂ f3
∂ r
∂ f3
∂φ
∂ f4
∂ v
∂ f4
∂ f4
∂ r
∂ f4
∂φ
#
$
%
%
%
%
%
%
%
%
%
%
%
&
'
( ( ( ( ( ( ( ( ( ( (
Δv(t) Δp(t) Δr(t)
Δφ(t)
#
$
%
%
%
%
%
&
'
( ( ( ( (
+ Control [ ] + Disturbance [ ]
Body-Axis Perturbation
Variables"
Δu1
Δu2
"
#
$
$
%
&
' '=
Δδ A
Δδ R
"
#
&
' =
Aileron Perturbation Rudder Perturbation
"
#
$
$
%
&
' '
Δw1
Δw2
"
#
$
$
%
&
' '=
Δδ A
Δδ R
"
#
&
' =
Side Wind Perturbation Vortical Wind Perturbation
"
#
$
$
%
&
' '
Δv Δp Δr
Δφ
#
$
%
%
%
%
%
&
'
( ( ( ( (
=
Side Velocity Perturbation Body − Axis Roll Rate Perturbation Body − Axis Yaw Rate Perturbation Roll Angle about Body x Axis Perturbation
#
$
%
%
%
%
%
&
'
( ( ( ( (
Trang 3Linearized Lateral-Directional
Response to Yaw Rate Initial
Condition"
~Roll-mode response of roll angle!
~Spiral-mode response of crossrange!
~Spiral-mode response of yaw angle!
~Dutch-roll-mode response
~Dutch-roll-mode
response of roll
and yaw rates!
Dimensional Stability-and-Control
Derivatives"
∂ f1 ∂ v ∂ f1 ∂ p ∂ f1 ∂ r ∂ f1 ∂φ
∂ f2 ∂ v ∂ f2 ∂ p ∂ f2 ∂ r ∂ f2 ∂φ
∂ f3 ∂ v ∂ f3 ∂ p ∂ f3 ∂ r ∂ f3 ∂φ
∂ f4 ∂ v ∂ f4 ∂ p ∂ f4 ∂ r ∂ f4 ∂φ
#
$
%
%
%
%
%
&
'
( ( ( ( (
Stability Matrix!
=
Yv ( Yp+ wN) ( Yr− uN) g cos θN
#
$
%
%
%
%
%
%
&
'
( ( ( ( ( (
Dimensional
Stability-and-Control Derivatives"
#
$
%
%
%
%
%
&
'
( ( ( ( (
=
YδA YδR
LδA LδR
NδA NδR
#
$
%
%
%
%
%
&
'
( ( ( ( (
∂ f1 ∂ vwind ∂ f1 ∂ pwind
∂ f2 ∂ vwind ∂ f2 ∂ pwind
∂ f3 ∂ vwind ∂ f3 ∂ pwind
∂ f4 ∂ vwind ∂ f4 ∂ pwind
"
#
$
$
$
$
$
%
&
' ' ' ' '
=
Yv Yp
Lv Lp
Nv Np
"
#
$
$
$
$
$
%
&
' ' ' ' '
Control
Effect Matrix!
Disturbance
Effect Matrix!
Stability Axes
Trang 4Stability Axes"
• Nominal x axis is offset from the body centerline by
the nominal angle of attack, αN "
Transformation from Original Body Axes to Stability Axes"
HB S =
cosαN 0 sinαN
−sinαN 0 cosαN
#
$
%
%
%
&
'
( ( (
Δu Δv Δw
"
#
$
$
$
%
&
' ' 'S
= HB S
Δu Δv Δw
"
#
$
$
$
%
&
' ' 'B
Δp Δq Δr
"
#
$
$
$
%
&
' ' '
S
=H B S
Δp Δq Δr
"
#
$
$
$
%
&
' ' '
B
• Side velocity (Δv) and pitch rate (Δq) are unchanged
by the transformation "
Stability-Axis State "
Δv(t)
Δp(t)
Δr(t)
Δ φ (t)
#
$
%
%
%
%
%
&
'
(
(
(
(
(
Body−Axis
⇒ αN ⇒
Δv(t) Δp(t) Δr(t)
Δ φ (t)
#
$
%
%
%
%
%
&
'
( ( ( ( (
Stability−Axis
Stability-Axis State"
Δv(t) Δp(t) Δr(t)
Δ φ (t)
#
$
%
%
%
%
%
&
'
( ( ( ( (
Stability−Axis
VN ⇒
Δ β (t)
Δp(t) Δr(t)
Δ φ (t)
#
$
%
%
%
%
%
&
'
( ( ( ( (
Stability−Axis
• Replace side velocity by sideslip angle"
Trang 5Stability-Axis State"
Δβ(t)
Δp(t)
Δr(t)
Δφ(t)
$
%
&
&
&
&
&
'
(
) ) ) ) )
Stability−Axis
⇒
Δr(t)
Δβ(t)
Δp(t)
Δφ(t)
$
%
&
&
&
&
&
'
(
) ) ) ) )
Stability−Axis
=
Stability − Axis Yaw Rate Perturbation
Sideslip Angle Perturbation Stability − Axis Roll Rate Perturbation
Stability − Axis Roll Angle Perturbation
$
%
&
&
&
&
&
'
(
) ) ) ) )
• Revise state order"
Stability-Axis Lateral-Directional
Equations"
Δr(t)
Δ β(t) Δp(t)
Δ φ(t)
$
%
&
&
&
&
&
'
(
) ) ) ) )
S
=
Y r
V N −1
+ ,
/
0 Yβ
V N
Y p
V N
g cosγ N
V N
tanγN 0 1 0
$
%
&
&
&
&
&
&
&
'
(
) ) ) ) ) ) )
S
Δr(t)
Δβ(t)
Δp(t)
Δφ(t)
$
%
&
&
&
&
&
'
(
) ) ) ) )
S
+
N δA N δR
Y δA
V N
Y δR
V N
L δA L δR
$
%
&
&
&
&
&
&
'
(
) ) ) ) ) )
S
ΔδA(t) ΔδR(t)
$
%
&
&
' (
) )+
Nβ N p
Yβ
V N
Y p
V N
Lβ L p
$
%
&
&
&
&
&
&
&
'
(
) ) ) ) ) ) )S
Δβwind
Δp wind
$
%
&
&
' (
) )
Why Modify the Equations?"
• Dutch-roll mode is primarily described by stability-axis yaw
rate and sideslip angle"
• Roll and spiral mode are primarily described by stability-axis
roll rate and roll angle"
• Linearized equations allow the three modes to be studied"
Stable Spiral!
Unstable Spiral!
Roll!
Dutch Roll, top! Dutch Roll, front!
Why Modify the Equations?"
FLD= FDR FRS
DR
FDR RS FRS
!
"
#
#
$
%
&
&=
FDR small small FRS
!
"
#
#
$
%
&
&≈
FDR 0
0 FRS
!
"
#
#
$
%
&
&
Effects of Dutch roll perturbations
on Dutch roll motion"
Effects of Dutch roll perturbations
on roll-spiral motion"
Effects of roll-spiral perturbations
on Dutch roll motion"
Effects of roll-spiral perturbations on roll-spiral motion"
but are the off-diagonal blocks really small?!
Dassault Rafale!
Trang 6Stability, Control, and
Disturbance Matrices"
FLD= FDR FRS
DR
FDR RS FRS
!
"
#
#
$
%
&
&=
N r Nβ N p 0
Y r
V N −1
)
*
V N
Y p
V N
g cosγ N
V N
L r Lβ L p 0
!
"
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
GLD=
NδA NδR
YδA
YδR
LδA LδR
"
#
$
$
$
$
$
$
%
&
' ' ' ' ' '
LLD=
Yβ
V N
Y p
V N
"
#
$
$
$
$
$
$
$
%
&
' ' ' ' ' ' '
Δx1
Δx2
Δx3
Δx4
"
#
$
$
$
$
%
&
' ' ' '
=
Δr
Δ
Δp
Δφ
"
#
$
$
$
$
%
&
' ' ' '
Δu1
Δu2
"
#
$ %
&
' = Δδ A
Δδ R
"
#
%
&
Δw1
Δw2
"
#
$ %
&
' = ΔδA ΔδR
"
#
%
&
Lateral-Directional Stability Derivatives
2 nd -Order Approximate
Modes of
Lateral-Directional Motion
2 nd -Order Approximations
in System Matrices"
FLD= FDR 0
0 FRS
!
"
#
#
$
%
&
&=
N r Nβ 0 0
Y r
V N −1
)
*
!
"
#
#
#
#
#
#
#
$
%
&
&
&
&
&
&
&
GLD=
NδA 0
YδA
"
#
$
$
$
$
$
$
%
&
' ' ' ' ' '
LLD=
Yβ
V N 0
"
#
$
$
$
$
$
$
$
%
&
' ' ' ' ' ' '
Trang 7Second-Order Models of
Lateral-Directional Motion"
• Approximate Spiral-Roll Equation"
• Approximate Dutch Roll Equation"
ΔxDR= Δr
Δ β
#
$
%
%
&
'
( (≈
Y r
V N
−1 + ,
/
0 Yβ
V N
#
$
%
%
%
%
&
'
( ( ( (
Δr
Δβ
#
$
%
%
&
'
( (+
N δR
Y δR
V N
#
$
%
%
%
&
'
( ( ( ΔδR +
Nβ
Yβ
V N
#
$
%
%
%
%
&
'
( ( ( (
Δβwind
Δ φ
#
$
%
%
&
'
( (≈
L p 0
#
$
%
%
&
'
( (
Δp
Δφ
#
$
%
%
&
'
( (+
L δ A
0
#
$
%
%
&
'
( (Δδ A +
L p
0
#
$
%
%
&
'
( (Δp wind
Approximate Roll and Spiral Modes"
Δp
Δ φ
#
$
%
%
&
'
( ( =
Lp 0
1 0
#
$
%
%
&
'
( (
Δp
Δ φ
#
$
%
%
&
'
( ( +
Lδ A
0
#
$
%
%
& '
( ( Δ δ
A
ΔRS(s) = s s − L ( p)
λS = 0
λR = Lp
• Characteristic polynomial has real roots"
• Roll rate is damped by L p"
• Roll angle is a pure integral of roll rate"
Δp t( ) Δφ t( )
• Initial condition response"
Neutral stability!
Generally < 0!
Roll Damping Due to Roll Rate, Lp!
L p ≈ C l p
ρV N
2
#
$
'
b
#
$
'
2
#
$
'
(Sb
= C l ˆp
ρV N
#
$
'
C l
ˆp
( )Wing=∂ ΔC( l)Wing
C L
α 12
1 + 3λ
1 + λ
&
'(
)
*+
C l ˆp
( )Wing = −π AR
32
C l
ˆp ≈ C( )l ˆp Vertical Tail + C( )l ˆp Horizontal Tail + C( )l ˆp Wing
principal contributors"
< 0 for stability!
NACA-TR-1098, 1952!
NACA-TR-1052, 1951 !
Roll Damping Due
• Tapered vertical tail"
• Tapered horizontal tail"
ˆp = pb
2V N
C l ˆp
( )ht =∂ ΔC( l)ht
∂ ˆp = −
C L
αht
12
S ht S
%
&
' ( )
* 1+ 3λ 1+ λ
%
&
)
*
• pb/2V Ndescribes helix
C l ˆp
( )vt =∂(ΔC l)vt
∂ˆp = −
C Y
βvt
12
S vt S
%
&
)
* 1+ 3λ 1+λ
%
&
)
*
Trang 8Approximate Dutch
Roll Mode"
Δr
Δ β
#
$
%
%
&
'
( (=
Y r
V N
−1
* +
- / Yβ
V N
#
$
%
%
%
%
&
'
( ( ( (
Δr
Δ β
#
$
%
%
&
'
( (+
N δR
Y δR
V N
#
$
%
%
%
&
'
( ( (
Δ δR
ΔDR (s) = s2
− N r+ β
V N
$
%
' (
)s + Nβ 1−Y r
V N
( )+ N r
Yβ
V N
* +,
-./
ωn DR = Nβ 1−Y r
V N
( )+ N r Yβ
V N
ζDR = − N r+ β
V N
$
%
' (
) 2 Nβ 1−Y r
V N
( )+ N r
Yβ
V N
Yβ
V N
ζDR = − N r+ β
V N
%
&
( )
* 2 Nβ+ N r
Yβ
V N
• With negligible
side-force
sensitivity to
yaw rate, Y r"
• Characteristic
polynomial,
natural
frequency, and
damping ratio"
Initial Condition Response of Approximate Dutch Roll Mode"
Y ≈ ∂CY
∂β qS • β = CYβqS • β
CY
β ≈ C ( )Yβ Fuselage+ C ( )Yβ Vertical Tail+ C ( )Yβ Wing
C Yβ
( )Vertical Tail≈ ∂C Y
∂β
$
%
& '
(
)
vt
ηvt S Vertical Tail
S
C Y
β
( )Fuselage≈ −2S Base
πd Base2
4
C Yβ
( )Wing ≈ −C D Parasite, Wing − kΓ2
ηvt= Vertical tail efficiency
k = π AR
Γ = Wing dihedral angle, rad
• Fuselage, vertical tail, and wing are main contributors"
N ≈ ∂C n
∂β
ρV2
2
%
&
)
*Sb • β = C nβ
ρV2
2
%
&
)
*Sb • β
! Side force contributions times respective moment arms"
– Non-dimensional stability derivative"
Cnβ ≈ C( )nβ Vertical Tail + C( )nβ Fuselage+ C( )nβ Wing + C( )nβ Propeller
Trang 9( )C nβ Vertical Tail ≈ −C Y βvtηvt
S vt l vt
Sb −C Y βvtηvtVVT
Vertical tail contribution"
VVT =S vt l vt
ηvt=ηelas(1+∂σ∂β) V vt
2
V N
2
%
&
)
*
l vt Vertical tail length (+)
= distance from center of mass to tail center of pressure
= x cm − x cp vt [x is positive forward; both are negative numbers]
C nβ
( )Fuselage=−2K Volume Fuselage
Sb
K = 1− d max
Length fuselage
"
#
%
&
1.3
Fuselage contribution"
C nβ
( )Wing = 0.75C L N Γ + fcn Λ, AR,λ( )C L2N
Wing (differential lift and induced drag) contribution"
• Dimensional stability derivative "
Nr ≈ Cn
r
ρVN
2
2Izz
#
$
'
(Sb = Cn ˆr
b
2 VN
#
$
'
2
2Izz
#
$
'
(Sb
= Cn ˆr
ρVN
4Izz
#
$
'
(Sb2 < 0 for stability!
• High
wing-sweep angle
can lead to
N r > 0"
Martin Marietta X-24B!
Yaw Damping Due
to Yaw Rate, Nr!
C n ˆr ≈ C( )n ˆr Vertical Tail + C( )n ˆr Wing
Cn ˆr
Parasite, Wing
k 0 and k 1 are functions of
• Wing contribution"
• Vertical tail contribution"
Δ C( )n Vertical Tail = − C( )nβ Vertical Tail
rl vt
V N
( )= − C( )nβ Vertical Tail
l vt b
$
%
' (
b
V N
$
%
& ' (
)r
ˆr = rb
2V N
C n ˆr
( )vt=∂Δ C( )n Vertical Tail
N
∂Δ C( )n Vertical Tail
l vt b
%
&
( )
NACA-TR-1098, 1952!
Trang 10Comparison of Fourth-
and Second-Order
Dynamic Models
• 2 nd -order-model eigenvalues are close to those of the 4 th -order model"
• Eigenvalue magnitudes of Dutch roll and roll roots are similar"
Bizjet Fourth- and Second-Order Models and Eigenvalues "
Fourth-Order Model
-0.1079 1.9011 0.0566 0 0 -1.1196 0.00883
-1 -0.1567 0 0.0958 0 0 -1.2 0.2501 -2.408 -1.1616 0 2.3106 0 -1.16e-01 + 1.39e+00j 8.32E-02 1.39E+00
0 0 1 0 0 0 -1.16e-01 - 1.39e+00j 8.32E-02 1.39E+00
Dutch Roll Approximation
-0.1079 1.9011 -1.1196 -1.32e-01 + 1.38e+00j 9.55E-02 1.38E+00 -1 -0.1567 0 -1.32e-01 - 1.38e+00j 9.55E-02 1.38E+00
Roll-Spiral Approximation
Unstable!
Comparison of Second- and Fourth-Order
Initial-Condition Responses of Business Jet"
Fourth-Order Response! Second-Order Response!
Primary Lateral-Directional Control Derivatives"
LδA = Cl δA ρ VN
2
2Ixx
#
$
'
(Sb
NδR = Cn δR ρ VN
2
2Izz
#
$
'
(Sb
Trang 11Next Time:
Analysis of Time Response
Reading
338-342
Supplemental Material"
Δ v(t)
Δp(t)
Δr(t)
Δ φ(t)
#
$
%
%
%
%
%
&
'
(
(
(
(
(
=
Y v (Y p+w N) (Y r−u N) g cosθN
#
$
%
%
%
%
%
%
&
'
( ( ( ( ( (
Δv(t) Δp(t) Δr(t)
Δφ(t)
#
$
%
%
%
%
%
&
'
( ( ( ( (
+
Y δA Y δR
L δA L δR
N δA N δR
#
$
%
%
%
%
%
&
'
( ( ( ( (
ΔδA(t)
ΔδR(t)
#
$
%
%
&
'
( (+
Y v Y p
L v L p
N v N p
#
$
%
%
%
%
%
&
'
( ( ( ( (
Δv wind
Δp wind
#
$
%
%
&
'
( (
• Rolling and yawing motions"
Body-Axis Perturbation
Equations of Motion"