1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Aircraft Flight Dynamics Robert F. Stengel Lecture12 LateralDirectional Dynamics

11 279 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 1,1 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Linearized Lateral-Directional and roll modes" derivatives" Copyright 2012 by Robert Stengel.. All rights reserved... but are the off-diagonal blocks really small?!. Dassault Rafale!.

Trang 1

Linearized Lateral-Directional

and roll modes"

derivatives"

Copyright 2012 by Robert Stengel All rights reserved For educational use only.!

http://www.princeton.edu/~stengel/MAE331.html !

http://www.princeton.edu/~stengel/FlightDynamics.html !

6-Component " Lateral-Directional Equations of Motion"

State Vector, 6 components!

Nonlinear Dynamic Equations!

v = Y / m + gsinφ cosθ − ru + pw

y I= cosθ sinψ ( )u + cosφ cosψ + sinφ sinθ sinψ( )v + − sinφ cosψ + cosφ sinθ sinψ( )w

p = I zz L + I xz N − I xz(I yy − I xx − I zz)p + I xz

2

+ I zz(I zz − I yy)

2

r = I xz L + I xx N − I xz(I yy − I xx − I zz)r + I xz

2

+ I xx(I xx − I yy)

2

φ = p + qsinφ + r cosφ( ) tanθ

ψ = q sinφ + r cosφ( ) secθ

x1

x2

x3

x4

x5

x6

!

"

#

#

#

#

#

$

%

&

&

&

&

&

= xLD6 =

v y p r

φ ψ

!

"

#

#

#

#

$

%

&

&

&

&

&

=

Side Velocity Crossrange Body − Axis Roll Rate Body − Axis Yaw Rate Roll Angle about Body x Axis Yaw Angle about Inertial x Axis

!

"

#

#

#

#

$

%

&

&

&

&

&

Douglas A-4!

4- Component "

Lateral-Directional Equations of Motion"

State Vector, 4 components!

Nonlinear Dynamic Equations, neglecting crossrange and yaw angle!

v = Y / m + gsinφ cosθ − ru + pw

p = I zz L + I xz N − I xz(I yy − I xx − I zz)p + I xz

2

+ I zz(I zz − I yy)

2

r = I xz L + I xx N − I xz(I yy − I xx − I zz)r + I xz

2

+ I xx(I xx − I yy)

2

φ = p + qsinφ + r cosφ( )tanθ

x1

x2

x3

x4

!

"

#

#

#

#

#

$

%

&

&

&

&

&

= xLD4 =

v p r

φ

!

"

#

#

#

#

#

$

%

&

&

&

&

&

=

Side Velocity Body − Axis Roll Rate Body − Axis Yaw Rate Roll Angle about Body x Axis

!

"

#

#

#

#

#

$

%

&

&

&

&

&

Eurofighter Typhoon!

Lateral-Directional Equations

of Motion Assuming Steady, Level Longitudinal Flight"

Nonlinear dynamic equations, assuming steady, level, flight (longitudinal variables are constant )!

v = YB / m + gsinφ cosθN − ruN + pwN

= YB / m + gsinφ cosαN − ruN+ pwN

p = I ( zzLB+ IxzNB) ( IxxIzz − Ixz2 )

r = I ( xzLB+ IxxNB) ( IxxIzz− Ixz2)

φ = p+ r cosφ ( ) tanθN = p + r cos ( φ ) tanαN

q N= 0

γN= 0

θNN

Lockheed F-117!

Trang 2

Lateral-Directional Force and

Moments"

1

2 ρNVN

2

S; Body − Axis Side Force

2 ρNVN

2

Sb; Body − Axis Rolling Moment

2 ρNVN

2

Sb; Body − Axis Yawing Moment

Linearized Equations

of Motion

Body-Axis Perturbation

Equations of Motion"

Δ v(t)

Δp(t)

Δr(t)

Δ  φ(t)

#

$

%

%

%

%

%

&

'

(

(

(

(

(

=

f1

v

f1

f1

r

f1

∂φ

f2

v

f2

f2

r

f2

∂φ

f3

v

f3

f3

r

f3

∂φ

f4

v

f4

f4

r

f4

∂φ

#

$

%

%

%

%

%

%

%

%

%

%

%

&

'

( ( ( ( ( ( ( ( ( ( (

Δv(t) Δp(t) Δr(t)

Δφ(t)

#

$

%

%

%

%

%

&

'

( ( ( ( (

+ Control [ ] + Disturbance [ ]

Body-Axis Perturbation

Variables"

Δu1

Δu2

"

#

$

$

%

&

' '=

Δδ A

Δδ R

"

#

&

' =

Aileron Perturbation Rudder Perturbation

"

#

$

$

%

&

' '

Δw1

Δw2

"

#

$

$

%

&

' '=

Δδ A

Δδ R

"

#

&

' =

Side Wind Perturbation Vortical Wind Perturbation

"

#

$

$

%

&

' '

Δv Δp Δr

Δφ

#

$

%

%

%

%

%

&

'

( ( ( ( (

=

Side Velocity Perturbation Body − Axis Roll Rate Perturbation Body − Axis Yaw Rate Perturbation Roll Angle about Body x Axis Perturbation

#

$

%

%

%

%

%

&

'

( ( ( ( (

Trang 3

Linearized Lateral-Directional

Response to Yaw Rate Initial

Condition"

~Roll-mode response of roll angle!

~Spiral-mode response of crossrange!

~Spiral-mode response of yaw angle!

~Dutch-roll-mode response

~Dutch-roll-mode

response of roll

and yaw rates!

Dimensional Stability-and-Control

Derivatives"

∂ f1 ∂ v ∂ f1 ∂ p ∂ f1 ∂ r ∂ f1 ∂φ

∂ f2 ∂ v ∂ f2 ∂ p ∂ f2 ∂ r ∂ f2 ∂φ

∂ f3 ∂ v ∂ f3 ∂ p ∂ f3 ∂ r ∂ f3 ∂φ

∂ f4 ∂ v ∂ f4 ∂ p ∂ f4 ∂ r ∂ f4 ∂φ

#

$

%

%

%

%

%

&

'

( ( ( ( (

Stability Matrix!

=

Yv ( Yp+ wN) ( YruN) g cos θN

#

$

%

%

%

%

%

%

&

'

( ( ( ( ( (

Dimensional

Stability-and-Control Derivatives"

#

$

%

%

%

%

%

&

'

( ( ( ( (

=

YδA YδR

LδA LδR

NδA NδR

#

$

%

%

%

%

%

&

'

( ( ( ( (

∂ f1 ∂ vwind ∂ f1 ∂ pwind

∂ f2 ∂ vwind ∂ f2 ∂ pwind

∂ f3 ∂ vwind ∂ f3 ∂ pwind

∂ f4 ∂ vwind ∂ f4 ∂ pwind

"

#

$

$

$

$

$

%

&

' ' ' ' '

=

Yv Yp

Lv Lp

Nv Np

"

#

$

$

$

$

$

%

&

' ' ' ' '

Control

Effect Matrix!

Disturbance

Effect Matrix!

Stability Axes

Trang 4

Stability Axes"

•  Nominal x axis is offset from the body centerline by

the nominal angle of attack, αN "

Transformation from Original Body Axes to Stability Axes"

HB S =

cosαN 0 sinαN

−sinαN 0 cosαN

#

$

%

%

%

&

'

( ( (

Δu Δv Δw

"

#

$

$

$

%

&

' ' 'S

= HB S

Δu Δv Δw

"

#

$

$

$

%

&

' ' 'B

Δp Δq Δr

"

#

$

$

$

%

&

' ' '

S

=H B S

Δp Δq Δr

"

#

$

$

$

%

&

' ' '

B

•   Side velocity (Δv) and pitch rate (Δq) are unchanged

by the transformation "

Stability-Axis State "

Δv(t)

Δp(t)

Δr(t)

Δ φ (t)

#

$

%

%

%

%

%

&

'

(

(

(

(

(

Body−Axis

⇒ αN

Δv(t) Δp(t) Δr(t)

Δ φ (t)

#

$

%

%

%

%

%

&

'

( ( ( ( (

Stability−Axis

Stability-Axis State"

Δv(t) Δp(t) Δr(t)

Δ φ (t)

#

$

%

%

%

%

%

&

'

( ( ( ( (

Stability−Axis

VN

Δ β (t)

Δp(t) Δr(t)

Δ φ (t)

#

$

%

%

%

%

%

&

'

( ( ( ( (

Stability−Axis

  Replace side velocity by sideslip angle"

Trang 5

Stability-Axis State"

Δβ(t)

Δp(t)

Δr(t)

Δφ(t)

$

%

&

&

&

&

&

'

(

) ) ) ) )

Stability−Axis

Δr(t)

Δβ(t)

Δp(t)

Δφ(t)

$

%

&

&

&

&

&

'

(

) ) ) ) )

Stability−Axis

=

Stability − Axis Yaw Rate Perturbation

Sideslip Angle Perturbation Stability − Axis Roll Rate Perturbation

Stability − Axis Roll Angle Perturbation

$

%

&

&

&

&

&

'

(

) ) ) ) )

•  Revise state order"

Stability-Axis Lateral-Directional

Equations"

Δr(t)

Δ β(t) Δp(t)

Δ φ(t)

$

%

&

&

&

&

&

'

(

) ) ) ) )

S

=

Y r

V N −1

+ ,

/

0 Yβ

V N

Y p

V N

g cosγ N

V N

tanγN 0 1 0

$

%

&

&

&

&

&

&

&

'

(

) ) ) ) ) ) )

S

Δr(t)

Δβ(t)

Δp(t)

Δφ(t)

$

%

&

&

&

&

&

'

(

) ) ) ) )

S

+

N δA N δR

Y δA

V N

Y δR

V N

L δA L δR

$

%

&

&

&

&

&

&

'

(

) ) ) ) ) )

S

ΔδA(t) ΔδR(t)

$

%

&

&

' (

) )+

Nβ N p

Yβ

V N

Y p

V N

Lβ L p

$

%

&

&

&

&

&

&

&

'

(

) ) ) ) ) ) )S

Δβwind

Δp wind

$

%

&

&

' (

) )

Why Modify the Equations?"

•   Dutch-roll mode is primarily described by stability-axis yaw

rate and sideslip angle"

•   Roll and spiral mode are primarily described by stability-axis

roll rate and roll angle"

•   Linearized equations allow the three modes to be studied"

Stable Spiral!

Unstable Spiral!

Roll!

Dutch Roll, top! Dutch Roll, front!

Why Modify the Equations?"

FLD= FDR FRS

DR

FDR RS FRS

!

"

#

#

$

%

&

&=

FDR small small FRS

!

"

#

#

$

%

&

&≈

FDR 0

0 FRS

!

"

#

#

$

%

&

&

Effects of Dutch roll perturbations

on Dutch roll motion"

Effects of Dutch roll perturbations

on roll-spiral motion"

Effects of roll-spiral perturbations

on Dutch roll motion"

Effects of roll-spiral perturbations on roll-spiral motion"

but are the off-diagonal blocks really small?!

Dassault Rafale!

Trang 6

Stability, Control, and

Disturbance Matrices"

FLD= FDR FRS

DR

FDR RS FRS

!

"

#

#

$

%

&

&=

N r Nβ N p 0

Y r

V N −1

)

*

V N

Y p

V N

g cosγ N

V N

L r Lβ L p 0

!

"

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

GLD=

NδA NδR

YδA

YδR

LδA LδR

"

#

$

$

$

$

$

$

%

&

' ' ' ' ' '

LLD=

Yβ

V N

Y p

V N

"

#

$

$

$

$

$

$

$

%

&

' ' ' ' ' ' '

Δx1

Δx2

Δx3

Δx4

"

#

$

$

$

$

%

&

' ' ' '

=

Δr

Δ

Δp

Δφ

"

#

$

$

$

$

%

&

' ' ' '

Δu1

Δu2

"

#

$ %

&

' = Δδ A

Δδ R

"

#

%

&

Δw1

Δw2

"

#

$ %

&

' = ΔδA ΔδR

"

#

%

&

Lateral-Directional Stability Derivatives

2 nd -Order Approximate

Modes of

Lateral-Directional Motion

2 nd -Order Approximations

in System Matrices"

FLD= FDR 0

0 FRS

!

"

#

#

$

%

&

&=

N r Nβ 0 0

Y r

V N −1

)

*

!

"

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

GLD=

NδA 0

YδA

"

#

$

$

$

$

$

$

%

&

' ' ' ' ' '

LLD=

Yβ

V N 0

"

#

$

$

$

$

$

$

$

%

&

' ' ' ' ' ' '

Trang 7

Second-Order Models of

Lateral-Directional Motion"

•   Approximate Spiral-Roll Equation"

•   Approximate Dutch Roll Equation"

ΔxDR= Δr

Δ  β

#

$

%

%

&

'

( (≈

Y r

V N

−1 + ,

/

0 Yβ

V N

#

$

%

%

%

%

&

'

( ( ( (

Δr

Δβ

#

$

%

%

&

'

( (+

N δR

Y δR

V N

#

$

%

%

%

&

'

( ( ( ΔδR +

Nβ

Yβ

V N

#

$

%

%

%

%

&

'

( ( ( (

Δβwind

Δ φ

#

$

%

%

&

'

( (≈

L p 0

#

$

%

%

&

'

( (

Δp

Δφ

#

$

%

%

&

'

( (+

L δ A

0

#

$

%

%

&

'

( (Δδ A +

L p

0

#

$

%

%

&

'

( (Δp wind

Approximate Roll and Spiral Modes"

Δp

Δ  φ

#

$

%

%

&

'

( ( =

Lp 0

1 0

#

$

%

%

&

'

( (

Δp

Δ φ

#

$

%

%

&

'

( ( +

Lδ A

0

#

$

%

%

& '

( ( Δ δ

A

ΔRS(s) = s s − L ( p)

λS = 0

λR = Lp

•   Characteristic polynomial has real roots"

•  Roll rate is damped by L p"

•  Roll angle is a pure integral of roll rate"

Δp t( ) Δφ t( )

•   Initial condition response"

Neutral stability!

Generally < 0!

Roll Damping Due to Roll Rate, Lp!

L p ≈ C l p

ρV N

2

#

$

'

b

#

$

'

2

#

$

'

(Sb

= C l ˆp

ρV N

#

$

'

C l

ˆp

( )Wing=∂ ΔC( l)Wing

C L

α 12

1 + 3λ

1 + λ

&

'(

)

*+

C l ˆp

( )Wing = −π AR

32

C l

ˆp ≈ C( )l ˆp Vertical Tail + C( )l ˆp Horizontal Tail + C( )l ˆp Wing

principal contributors"

< 0 for stability!

NACA-TR-1098, 1952!

NACA-TR-1052, 1951 !

Roll Damping Due

•  Tapered vertical tail"

•  Tapered horizontal tail"

ˆp = pb

2V N

C l ˆp

( )ht =∂ ΔC( l)ht

∂ ˆp = −

C L

αht

12

S ht S

%

&

' ( )

* 1+ 3λ 1+ λ

%

&

)

*

•  pb/2V Ndescribes helix

C l ˆp

( )vt =∂(ΔC l)vt

ˆp = −

C Y

βvt

12

S vt S

%

&

)

* 1+ 3λ 1+λ

%

&

)

*

Trang 8

Approximate Dutch

Roll Mode"

Δr

Δ  β

#

$

%

%

&

'

( (=

Y r

V N

−1

* +

- / Yβ

V N

#

$

%

%

%

%

&

'

( ( ( (

Δr

Δ β

#

$

%

%

&

'

( (+

N δR

Y δR

V N

#

$

%

%

%

&

'

( ( (

Δ δR

ΔDR (s) = s2

− N r+ β

V N

$

%

' (

)s + Nβ 1−Y r

V N

( )+ N r

Yβ

V N

* +,

-./

ωn DR = Nβ 1−Y r

V N

( )+ N r Yβ

V N

ζDR = − N r+ β

V N

$

%

' (

) 2 Nβ 1−Y r

V N

( )+ N r

Yβ

V N

Yβ

V N

ζDR = − N r+ β

V N

%

&

( )

* 2 Nβ+ N r

Yβ

V N

•   With negligible

side-force

sensitivity to

yaw rate, Y r"

•   Characteristic

polynomial,

natural

frequency, and

damping ratio"

Initial Condition Response of Approximate Dutch Roll Mode"

Y ≈ ∂CY

∂β qS • β = CYβqS • β

CY

β ≈ C ( )Yβ Fuselage+ C ( )Yβ Vertical Tail+ C ( )Yβ Wing

C Yβ

( )Vertical Tail∂C Y

∂β

$

%

& '

(

)

vt

ηvt S Vertical Tail

S

C Y

β

( )Fuselage≈ −2S Base

πd Base2

4

C Yβ

( )Wing ≈ −C D Parasite, Wing − kΓ2

ηvt= Vertical tail efficiency

k = π AR

Γ = Wing dihedral angle, rad

•  Fuselage, vertical tail, and wing are main contributors"

N ≈ ∂C n

∂β

ρV2

2

%

&

)

*Sb • β = C nβ

ρV2

2

%

&

)

*Sb • β

!  Side force contributions times respective moment arms"

– Non-dimensional stability derivative"

Cnβ ≈ C( )nβ Vertical Tail + C( )nβ Fuselage+ C( )nβ Wing + C( )nβ Propeller

Trang 9

( )C nβ Vertical Tail ≈ −C Y βvtηvt

S vt l vt

Sb  −C Y βvtηvtVVT

Vertical tail contribution"

VVT =S vt l vt

ηvtelas(1+∂σ∂β) V vt

2

V N

2

%

&

)

*

l vt Vertical tail length (+)

= distance from center of mass to tail center of pressure

= x cm − x cp vt [x is positive forward; both are negative numbers]

C nβ

( )Fuselage=−2K Volume Fuselage

Sb

K = 1− d max

Length fuselage

"

#

%

&

1.3

Fuselage contribution"

C nβ

( )Wing = 0.75C L N Γ + fcn Λ, AR,λ( )C L2N

Wing (differential lift and induced drag) contribution"

•  Dimensional stability derivative "

Nr ≈ Cn

r

ρVN

2

2Izz

#

$

'

(Sb = Cn ˆr

b

2 VN

#

$

'

2

2Izz

#

$

'

(Sb

= Cn ˆr

ρVN

4Izz

#

$

'

(Sb2 < 0 for stability!

•  High

wing-sweep angle

can lead to

N r > 0"

Martin Marietta X-24B!

Yaw Damping Due

to Yaw Rate, Nr!

C n ˆr ≈ C( )n ˆr Vertical Tail + C( )n ˆr Wing

Cn ˆr

Parasite, Wing

k 0 and k 1 are functions of

  Wing contribution"

  Vertical tail contribution"

Δ C( )n Vertical Tail = − C( )nβ Vertical Tail

rl vt

V N

( )= − C( )nβ Vertical Tail

l vt b

$

%

' (

b

V N

$

%

& ' (

)r

ˆr = rb

2V N

C n ˆr

( )vt=∂Δ C( )n Vertical Tail

N

Δ C( )n Vertical Tail

l vt b

%

&

( )

NACA-TR-1098, 1952!

Trang 10

Comparison of Fourth-

and Second-Order

Dynamic Models

•   2 nd -order-model eigenvalues are close to those of the 4 th -order model"

•   Eigenvalue magnitudes of Dutch roll and roll roots are similar"

Bizjet Fourth- and Second-Order Models and Eigenvalues "

Fourth-Order Model

-0.1079 1.9011 0.0566 0 0 -1.1196 0.00883

-1 -0.1567 0 0.0958 0 0 -1.2 0.2501 -2.408 -1.1616 0 2.3106 0 -1.16e-01 + 1.39e+00j 8.32E-02 1.39E+00

0 0 1 0 0 0 -1.16e-01 - 1.39e+00j 8.32E-02 1.39E+00

Dutch Roll Approximation

-0.1079 1.9011 -1.1196 -1.32e-01 + 1.38e+00j 9.55E-02 1.38E+00 -1 -0.1567 0 -1.32e-01 - 1.38e+00j 9.55E-02 1.38E+00

Roll-Spiral Approximation

Unstable!

Comparison of Second- and Fourth-Order

Initial-Condition Responses of Business Jet"

Fourth-Order Response! Second-Order Response!

Primary Lateral-Directional Control Derivatives"

LδA = Cl δA ρ VN

2

2Ixx

#

$

'

(Sb

NδR = Cn δR ρ VN

2

2Izz

#

$

'

(Sb

Trang 11

Next Time:

Analysis of Time Response

Reading

338-342

Supplemental Material"

Δ v(t)

Δp(t)

Δr(t)

Δ φ(t)

#

$

%

%

%

%

%

&

'

(

(

(

(

(

=

Y v (Y p+w N) (Y ru N) g cosθN

#

$

%

%

%

%

%

%

&

'

( ( ( ( ( (

Δv(t) Δp(t) Δr(t)

Δφ(t)

#

$

%

%

%

%

%

&

'

( ( ( ( (

+

Y δA Y δR

L δA L δR

N δA N δR

#

$

%

%

%

%

%

&

'

( ( ( ( (

ΔδA(t)

ΔδR(t)

#

$

%

%

&

'

( (+

Y v Y p

L v L p

N v N p

#

$

%

%

%

%

%

&

'

( ( ( ( (

Δv wind

Δp wind

#

$

%

%

&

'

( (

  Rolling and yawing motions"

Body-Axis Perturbation

Equations of Motion"

Ngày đăng: 04/07/2014, 19:26

TỪ KHÓA LIÊN QUAN