1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Aircraft Flight Dynamics Robert F. Stengel Lecture11 Longitudinal Dynamics

14 295 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 1,6 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Linearized Longitudinal Robert Stengel, Aircraft Flight Dynamics • 6th-order -> 4th-order -> hybrid equations" • Dynamic stability derivatives " • Phugoid mode" • Short-period mode" Cop

Trang 1

Linearized Longitudinal

Robert Stengel, Aircraft Flight Dynamics 


•   6th-order -> 4th-order -> hybrid equations"

•   Dynamic stability derivatives "

•   Phugoid mode"

•   Short-period mode"

Copyright 2012 by Robert Stengel All rights reserved For educational use only.!

http://www.princeton.edu/~stengel/MAE331.html ! http://www.princeton.edu/~stengel/FlightDynamics.html !

•   Symmetric aircraft"

•   Motions in the vertical plane"

•   Flat earth "

x1

x2

x3

x4

x5

x6

!

"

#

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

&

= xLon6=

u w x z q

θ

!

"

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

=

Axial Velocity Vertical Velocity Range Altitude(–) Pitch Rate Pitch Angle

!

"

#

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

&

u = X / m − gsinθ − qw

w = Z / m + g cosθ + qu

x I= cosθ( )u + sinθ( )w

z I= − sinθ( )u + cosθ( )w

q = M / I yy

θ = q

State Vector, 6 components!

Nonlinear Dynamic Equations!

Fairchild-Republic A-10!

u = f1= X / m − g sin θ − qw

w = f2 = Z / m + g cos θ + qu

q = f3 = M / Iyy

x1

x2

x3

x4

!

"

#

#

#

#

#

$

%

&

&

&

&

&

= xLon4 =

u w q

θ

!

"

#

#

#

#

$

%

&

&

&

&

=

Axial Velocity, m/s Vertical Velocity, m/s Pitch Rate, rad/s Pitch Angle, rad

!

"

#

#

#

#

#

$

%

&

&

&

&

&

State Vector, 4 components!

Fourth-Order Hybrid Equations of Motion

Trang 2

Transform Longitudinal Velocity Components"

u = f1= X / m − g sinθ− qw

w = f2= Z / m + g cosθ+ qu

q = f3= M / I yy

θ= f4 = q

V = f1= T cos$% (α + i)− D − mgsinγ &' m

γ = f2= T sin$% (α + i)+ L − mg cosγ &' mV

q = f3= M / I yy

θ = f4= q x1

x2

x3

x4

!

"

#

#

#

$

%

&

&

&

=

u

w

q

θ

!

"

#

#

$

%

&

&=

Axial Velocity Vertical Velocity Pitch Rate Pitch Angle

!

"

#

#

#

$

%

&

&

&

x1 x2 x3 x4

!

"

#

#

#

$

%

&

&

&

=

V

γ

q

θ

!

"

#

#

#

$

%

&

&

&

=

Velocity Flight Path Angle Pitch Rate Pitch Angle

!

"

#

#

#

$

%

&

&

&

i = Incidence angle of the thrust vector with respect to the centerline

•   Replace X and Z by T, D, and L"

Hybrid Longitudinal Equations of Motion"

V = f1= T cos$% (α + i)− D − mgsinγ &' m

γ = f2= T sin$% (α + i)+ L − mg cosγ &' mV

q = f3= M / I yy

θ = f4= q

V = f1= T cos$% (α + i)− D − mgsinγ &' m

γ = f2= T sin$% (α + i)+ L − mg cosγ &' mV

q = f3= M / I yy

α = f4 =  θ − γ = q − 1

mV$%T sin α + i( )+ L − mg cosγ&'

x1

x2

x3

x4

!

"

#

#

#

$

%

&

&

&

=

V

γ

q

θ

!

"

#

#

#

$

%

&

&

&

=

Velocity Flight Path Angle Pitch Rate Pitch Angle

!

"

#

#

#

$

%

&

&

&

x1

x2

x3

x4

!

"

#

#

#

$

%

&

&

&

=

V

γ

q

α

!

"

#

#

#

$

%

&

&

&

=

Velocity Flight Path Angle Pitch Rate Angle of Attack

!

"

#

#

#

$

%

&

&

&

•  Replace pitch angle by angle of attack! α = θ − γ

θ = α +γ

Why Transform Equations and

State Vector?"

•  Phugoid (long-period) mode is primarily

described by velocity and flight path angle"

•  Short-period mode is primarily described

by pitch rate and angle of attack"

x1

x2

x3

x4

!

"

#

#

#

#

#

$

%

&

&

&

&

&

=

V

γ

q

α

!

"

#

#

#

#

$

%

&

&

&

&

=

Velocity Flight Path Angle Pitch Rate Angle of Attack

!

"

#

#

#

#

#

$

%

&

&

&

&

&

Why Transform Equations and State Vector?"

•   Hybrid linearized equations allow the two modes to be examined separately"

FLon = FPh FSP

Ph

FPh SP FSP

!

"

#

#

$

%

&

&

Effects of phugoid perturbations on phugoid motion"

Effects of phugoid perturbations on short-period motion"

Effects of short-period perturbations

on phugoid motion"

Effects of short-period period motion"

= FPh small

small FSP

!

"

#

#

$

%

&

& ≈

FPh 0

0 FSP

!

"

#

#

$

%

&

&

Trang 3

Nominal Equations of Motion in

VN= 0 = f1= T cos $% ( αN+ i ) − D − mgsinγN&' m

γN = 0 = f2= T sin $% ( αN+ i ) + L − mg cosγN&' mV

qN= 0 = f3= M Iyy

αN= 0 = f4= q − 1

mV $% T sin α ( N+ i ) + L − mg cosγN&'

xN

T

=# V N γN 0 αN

$ %&

T

Equations of Motion

Sensitivity Matrices for

Longitudinal LTI Model"

ΔxLon(t) = FLonΔxLon(t) + GLonΔuLon(t) + LLonΔwLon(t)

F =

∂ f1

∂V

∂ f1

∂γ

∂ f1

∂q

∂ f1

∂α

∂ f2

∂V

∂ f2

∂γ

∂ f2

∂q

∂ f2

∂α

∂ f3

∂V

∂ f3

∂γ

∂ f3

∂q

∂ f3

∂α

∂ f4

∂V

∂ f4

∂γ

∂ f4

∂q

∂ f4

∂α

$

%

&

&

&

&

&

&

&

&

&

&

&

'

(

) ) ) ) ) ) ) ) ) ) )

G =

∂ f1

∂δ E

∂ f1

∂δT

∂ f1

∂δ F

∂ f2

∂δ E

∂ f2

∂δT

∂ f2

∂δ F

∂ f3

∂δ E

∂ f3

∂δT

∂ f3

∂δ F

∂ f4

∂δ E

∂ f4

∂δT

∂ f4

∂δ F

#

$

%

%

%

%

%

%

%

%

%

%

&

'

( ( ( ( ( ( ( ( ( (

L =

∂ f1

∂V wind

∂ f1

∂αwind

∂ f2

∂V wind

∂ f2

∂αwind

∂ f3

∂V wind

∂ f3

∂αwind

∂ f4

∂V wind

∂ f4

∂αwind

#

$

%

%

%

%

%

%

%

%

%

%

%

&

'

( ( ( ( ( ( ( ( ( ( (

Velocity Dynamics"

V = f1 =1

m[T cosα − D − mgsinγ]= 1

m C TcosαρV

2

2 S − C D

ρV2

2 S − mgsinγ

%

&

( )

•   Nonlinear equation"

Thrust incidence angle neglected!

•   First row of linearized dynamic equation"

Δ  V (t) =f1

V ΔV (t)+

f1

∂γ Δ γ (t)+

f1

q Δq(t)+

f1

∂α Δ (t)

%

&

)

*

+ ∂ f1

∂δ E Δ δ E(t)+

f1

∂δ T Δ δ T (t)+

f1

∂δ F Δ δ F(t)

%

&'

( )*

+ ∂ f1

%

&

)

*

Trang 4

∂ f1

1

m ( CT V cosαNCD V) ρVN

2

2 S + C ( T N cosαN − CD N) ρVNS

%

&

)

*

∂ f1

−1

m [ mg cosγN] = −g cosγN

∂ f1

−1

m CD q

ρVN2

%

&

)

*

∂ f1

−1

m ( CT NsinαN + CDα) ρVN

2

%

&

)

*

•   Coefficients in first row of F"

Sensitivity of Velocity Dynamics

to State Perturbations "

C TV∂C T

∂V

C DV∂C D

∂V

C Dq∂C D

∂ q

C D

α ≡∂C D

∂α

V = C( Tcosα− C DV

2

2 S − mgsinγ

%

&

( )

* m

Sensitivity of Velocity Dynamics to Control and Disturbance Perturbations "

f1

−1

m CD δ E

ρ VN2

%

&

)

*

f1

1

m CT δT cos αN

ρ VN2

%

&

)

*

f1

−1

m CD δ F

ρ VN2

%

&

)

*

•   Coefficients in first rows of G and L"

∂ f1

∂ f1

∂V

∂ f1

∂ f1

∂α

C T δT∂C T

∂δT

C D δ E∂C D

∂δ E

C D δ F∂C D

∂δ F

f2

V =

1

mV N (C T VsinαN+C L VV N

2

2 S + C( T NsinαN + C L NV N S

$

%

' (

− 1

mV N2 (C T NsinαN + C L NV N

2

2 S − mg cosγN

$

%

( )

f2

∂γ =

1

mV N[mg sinγN]= g sinγ N V N

f2

q=

1

mV N C L q

ρV N2

2 S

$

%

' (

f2

∂α =

1

mV N (C T NcosαN + C Lα)ρV N

2

2 S

$

%

( )

•   Coefficients in second row of F"

Sensitivity of Flight Path Angle

Dynamics to State Perturbations "

•  Coefficients in second row of G and L in Supplemental Slide!

C T VC T

V

C L VC L

V

C L qC L

C Lα ≡ C L

∂α

γ= C( Tsinα+ C L

2

2 S − mg cosγ

%

&

)

* mV

∂ f3

1

Iyy Cm V

ρVN

2

#

$

' (

∂ f3

∂ f3

1

Iyy Cm q

ρVN

2

#

$

' (

∂ f3

1

Iyy Cmα

ρVN

2

#

$

' (

•   Coefficients in third row of F"

Sensitivity of Pitch Rate Dynamics to State Perturbations "

C m V∂C m

∂V

C m q∂C m

∂q

C m

α ≡∂C m

∂α

q = Cm ρ V2

2

( ) Sc Iyy

Trang 5

∂ f 4

∂V

∂γ

•   Coefficients in fourth row of F"

Sensitivity of Angle of Attack

Dynamics to State Perturbations "

∂ q

∂α

 α =  θ −  γ = q −  γ

Dimensional Stability and Control Derivatives

Dimensional Stability-Derivative

Notation"

!  Dimensional stability derivatives portray acceleration

sensitivities to state perturbations"

Drag mass (m)DV

Lift massLV γ

Moment moment of inertia (Iyy) ⇒ Mq

Dimensional Stability-Derivative

Notation"

f1

m ( CT Vcos αN− CD V) ρ VN

2

2 S + C ( T Ncos αN− CD N) ρ VNS

&

'

* +

∂ f2

Lα

mVN ( CT NcosαN+ CLα) ρVN

2

%

&

)

*

∂ f3

Iyy Cmα

ρVN2

%

&

)

*

Thrust and drag effects are combined and represented by one symbol!

Thrust and lift effects are combined and represented by one symbol!

Trang 6

Longitudinal Stability Matrix"

FLon = FPh FSP

Ph

FPh SP

FSP

!

"

#

#

$

%

&

& =

LV

VN

g

VNsinγN

Lq

LV

g

VNsinγN 1− Lq

VN

* +

-.

VN

!

"

#

#

#

#

#

#

#

#

$

%

&

&

&

&

&

&

&

&

Effects of phugoid perturbations on phugoid motion"

Effects of phugoid perturbations on short-period motion"

Effects of short-period perturbations on phugoid motion"

Effects of short-period perturbations on short-period motion"

Primary Longitudinal Stability

Derivatives"

D V−1

m C T V − C D

V

( )ρV N

2

2 S + C T N − C D

N

( )ρV N S

#

$

' (

Assuming γN  αN  0

L V

V N 1

mV N C L V

ρV N

2

2 S + C L N ρV N S

"

#

%

&

' −mV1

N

2 C L N

ρV N

2

2 S − mg

"

#

%

&

M q= 1

I yy C m q

ρV N2

2 Sc

"

#

%

&

Mα= 1

I yy C mα

ρV N

2

2 Sc

#

$

&

'

Lα

mV N (C T N + C Lα)ρV N

2

2 S

#

$

' (

Origins of Stability Effects

Velocity-Dependent Derivative

Definitions"

•   Air compressibility effects are a principal source of velocity dependence"

CD

∂ ( V / a ) = a

C D V ≡∂C D

V =

1

a

#

$

&

'

(C D M

C L V ≡∂C L

V =

1

a

#

$

&

'

(C L M

C m V≡∂C m

V =

1

a

#

$

&

'

(C m M

C D M ≈ 0

C D M > 0 C D M < 0

a = Speed of Sound

M = Mach number = V a

Trang 7

Pitch-Moment Coefficient

Sensitivity to Angle of Attack"

MB= Cmq Sc ≈ C ( m o+ Cm qq + Cmαα ) q Sc

Cm

αnet ( hcm − hcp net)

αnet

xcm − xcp net

c

$

%

(

αht

Pitch-Rate Derivative Definitions"

C m

q=∂C m

∂ q =

c

2V N

"

#

&

'C m ˆq

C m ˆq=∂C m

∂ ˆq =

∂C m

∂ qc 2V( N)=

2V N

c

"

#

%

&

'C mq

ˆq = qc 2VN

M q=∂M

= C m q( ρV N2 2)Sc = C m ˆq c

2V N

#

$

% &

' ( ρV N 2 2

#

$

% &

'

(Sc = C m ˆq

ρV N Sc2 4

#

$

% &

' (

M B = C m q Sc ≈ C m

o+C m

≈ C m o+∂C m

∂q q + C mαα

$

%

(

)q Sc

•  Pitch acceleration sensitivity to pitch rate "

Pitch-Rate Derivative Definitions"

in terms of a normalized pitch rate "

c

2VN

"

#

$ %

&

'Cm ˆq

C m ˆq=∂C m

ˆq =

C m

qc 2V

N

2V N

c

"

#

$ %

&

'C m q

ˆq = qc 2VN

M B = C m q Sc ≈ C m

o+C m

≈ C m o+∂C m

∂q q + C mαα

$

%

(

)q Sc

•  Then"

•  But dynamic equations require ∂C m /∂q "

Angle of Attack Distribution

Due to Pitch Rate"

•  Aircraft pitching at a constant rate, q rad/s, produces a normal velocity distribution along x"

Δw = −qΔx

Δ =Δw

V N

=−qΔx

V N

•  Corresponding angle of attack distribution"

Δ ht=ql ht

V N

•  Angle of attack perturbation at tail center of pressure"

l ht = horizontal tail distance from c.m.

Trang 8

Horizontal Tail Lift

Due to Pitch Rate"

•  Incremental tail lift due to pitch rate, referenced to tail area, S ht"

•  Lift coefficient sensitivity to pitch rate referenced to wing area"

ΔLht = ΔC ( L ht)ht

1

2 ρ VN

2

Sht

C L qht∂ ΔC( L ht)aircraft

∂C L ht

∂α

%

&

)

*

aircraft

l ht

V N

%

&

' ( )

*

ΔC L ht

( )aircraft = ΔC( L ht)ht

S ht

S

"

#

%

&

' = ∂C L ht

∂α

"

#

&

'

aircraft

Δ

* +

, ,

-

/ /=

∂C L ht

∂α

"

#

&

'

aircraft

ql ht

V N

"

#

$ %

&

'

•  Incremental tail lift coefficient due to pitch rate, referenced to

wing area, S"

Moment Coefficient Sensitivity to Pitch Rate of

the Horizontal Tail"

∂ ΔM ht

∂ q = C m qht

1

2ρV N

2Sc = −C L qht

l ht

V N

%

&

( )

1

2ρV N

2Sc

= − ∂C L ht

∂α

%

&

( )aircraft

l ht

V N

%

&

( ) ,

0

1l ht

c

%

&

( ) 1

2ρV N

2

Sc

C m qht= −∂C L ht

∂α

l ht

V N

$

%

& ' ( ) l ht

c

$

%

' ( ) = −∂C L ht

∂α

l ht

c

$

%

' (

2

c

V N

$

%

& ' ( )

•   Coefficient derivative with respect to normalized pitch rate is insensitive to velocity"

Cm ˆqht = ∂Cm ht

∂ ˆq =

∂Cm ht

∂ qc 2V ( N) = −2

∂CL ht

∂α

lht c

$

%

& ' ( )

2

Comparison of Fourth-

and Second-Order

Dynamic Models

•   0 - 100 sec "

4th-Order Initial-Condition Responses of Business Jet

at Two Time Scales"

•   0 - 6 sec "

•   Plotted over different periods of time"

–  4 initial conditions "

Trang 9

Second-Order Models of

Longitudinal Motion"

•  2 nd -Order Approximate Phugoid Equation"

ΔxPh= Δ V

Δ γ

#

$

%

%

&

'

(

(≈

−D V −g cosγ N

L V

V N

g

V NsinγN

#

$

%

%

%

&

'

( ( (

ΔV

Δγ

#

$

%

%

&

'

( (+

T δT

L δT

V N

#

$

%

%

%

&

'

( ( ( ΔδT +

−D V

L V

V N

#

$

%

%

%

&

'

( ( (

ΔV wind

ΔxSP= Δ q

Δ α

#

$

%

%

&

'

(

(≈

M q Mα

1 −L q

V N

+

,- /0 −

Lα

V N

#

$

%

%

%

&

'

( ( (

Δq

Δ

#

$

%

%

&

'

( (+

M δ E

−L δ E

V N

#

$

%

%

%

&

'

( ( (

Δδ E +

Mα

−Lα

V N

#

$

%

%

%

&

'

( ( (

Δ wind

•  2 nd -Order Approximate Short-Period Equation"

!

"

#

#

$

%

&

&

•  Full and approximate linear models"

Comparison of Bizjet Fourth- and Second-Order Model Responses"

•   Fourth Order"

•   Second Order"

because natural frequencies are widely separated"

Comparison of Bizjet Fourth- and

Second-Order Models and Eigenvalues"

Fourth-Order Model

F = G = Eigenvalue Damping Freq (rad/s)

-0.0185 -9.8067 0 0 0 4.6645 -8.43e-03 + 1.24e-01j 6.78E-02 1.24E-01

0 0 -1.2794 -7.9856 -9.069 0 -1.28e+00 + 2.83e+00j 4.11E-01 3.10E+00

-0.0019 0 1 -1.2709 0 0 -1.28e+00 - 2.83e+00j 4.11E-01 3.10E+00

Phugoid Approximation

F = G = Eigenvalue Damping Freq (rad/s)

Short-Period Approximation

F = G = Eigenvalue Damping Freq (rad/s)

Approximate Phugoid Roots "

•  Approximate Phugoid Equation (!N = 0)"

ΔxPh= Δ V

Δ  γ

#

$

%

%

&

'

( (≈

−D V −g

L V

V N 0

#

$

%

%

%

&

'

( ( (

ΔV

Δγ

#

$

%

%

&

'

( (+

T δT

L δT

V N

#

$

%

%

%

&

'

( ( ( ΔδT

•  Characteristic polynomial"

sI − FPh = det sI − F ( Ph) ≡ Δ(s) = s2+ DVs + gLV/ VN

= s2+ 2ζωns + ωn

2

•  Natural frequency and damping ratio"

2 L / D ( )N

compressibility effects"

Trang 10

Effect of Airspeed and L/D on Approximate

Phugoid Natural Frequency, Period, and

Damping Ratio "

ζ ≈ 1

2 ( L / D )N

Velocity

Natural

Damping Ratio

Neglecting compressibility effects"

Period, T = 2 π / ωn

≈ 0.45VN sec

Approximate Phugoid Response to

a 10% Thrust Increase "

•  What is the steady-state response?"

Approximate Short-Period Roots "

•  Approximate Short-Period Equation (L q = 0 )"

•  Characteristic polynomial"

ΔxSP= Δ q

Δ  α

#

$

%

%

&

'

( (

M q Mα

V N

#

$

%

%

%

&

'

( ( (

Δq

Δα

#

$

%

%

&

'

( ( +

M δ E

−L δ E

V N

#

$

%

%

%

&

'

( ( (

Δδ E

Δ(s) = s2+ Lα

V N − M q

$

%

& '

(

)s − Mα + M q

Lα

V N

$

%

& '

( )

= s2+ 2ζωn s +ω n2

ωn = − Mα+ M q

Lα

V N

$

%

& '

( ); ζ =

Lα

V N − M q

$

%

' (

2 − Mα+ M q

Lα

V N

$

%

& '

( )

Generally,

Lα> 0

Mα< 0

M q< 0

Approximate Short-Period Response

to a 0.1-Rad Pitch Control Step Input "

Pitch Rate, rad/s! Angle of Attack, rad!

Trang 11

Normal Load Factor Response to a

0.1-Rad Pitch Control Step Input "

Normal Load Factor, g s at c.m.!

Aft Pitch Control (Elevator)!

Normal Load Factor, g s at c.m.!

Forward Pitch Control (Canard)!

n z=V N

g (Δ α − Δq)=V N

g

Lα

V N

Δα +L δ E

V N

Δδ E

%

&'

( )*

•  Normal load factor at the center of mass"

•  Pilot focuses on normal load factor during rapid maneuvering"

Grumman X-29!

Next Time:

Lateral-Directional Dynamics

Reading

Flight Dynamics, 96-101, 574-582, 587-591 Virtual Textbook , Part 12

Supplemental Material

Flight Path Angle Dynamics"

•   Second row of linearized equation"

γ = f2 = 1

mV[T sinα + L − mg cosγ]= 1

mV C TsinαρV

2

2 S + C L

ρV2

2 S − mg cosγ

%

&

( )

•   Nonlinear equation"

Δ  γ (t) =f2

V ΔV (t) +

f2

∂γ Δ γ (t) +

f2

f2

∂α Δ α (t)

%

&

)

*

+ ∂ f2

∂δ E Δ δ E(t) +

f2

∂δ T Δ δ T (t) +

f2

∂δ F Δ δ F(t)

%

&'

( )*

+ ∂ f2

VwindΔVwind+

f2

∂αwind

Δ αwind

%

&

)

*

Ngày đăng: 04/07/2014, 19:26

TỪ KHÓA LIÊN QUAN