1. Trang chủ
  2. » Khoa Học Tự Nhiên

Introduction to Modern Liquid Chromatography, Third Edition part 77 docx

10 369 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 111,16 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

14.7.2 Thermodynamics of Direct Chromatographic Enantiomer Separation If a single type of enantioselective solute-selector interaction is solely considered and other adsorption mechanism

Trang 1

716 ENANTIOMER SEPARATIONS

here R- or S-enantiomer);

of Equation (14.3) provides two additional relationships:

ln K i= −1

T· Hi

R +Si

and

GR,S = GR − GS = −R · T · ln K i,R

K i,S = −R · T · ln α (14.5)

That is, plots of ln K i against 1/T are predicted to be linear, with a slope that is proportional toH0

i Likewise the separation factorα for two enantiomers R and

S can be related to the difference in their standard free energies of solute-selector

associationG0

R,S, as well as related differences in enthalpy changeH0

R,Sand entropy changeS0

R,S

14.7.2 Thermodynamics of Direct Chromatographic Enantiomer Separation

If a single type of (enantioselective) solute-selector interaction is solely considered

and other adsorption mechanisms do not exist for the solute, K iin Equations (14.3)

to (14.5) can be related to k and

Values ofG0

R,S, H0

R,S, andS0

R,S can be derived from values ofα as a function of T, since the (usually unknown) phase ratio

(but not in Eq 14.4) Plots of ln k against 1/T are usually positive (k decreasing with T), implying a negative value of H0

i or an enthalpically controlled retention

pro-cess That is, attractive (mostly electrostatic type) noncovalent interactions between

solute and selector result in values of K i 1 The latter contributions to retention are usually opposed by entropic effects, since the solute-selector complex is more ordered compared with the solute in the mobile phase That is, H> S◦ and

H> S◦, as observed for wide variety of different CSP-analyte mobile-phase systems The usual result is a decrease in values ofα for higher temperatures The opposite behavior, an increase in enantioselectivity with T (called entropically con-trolled chiral recognition), has been observed in a few cases involving

polysaccharide-and protein-type CSPs The latter have been related to possible binding site-related (de)solvation phenomena [175] and/or conformational changes in backbones of the

selector [176, 177] Nonlinear plots of ln k against 1/T have also been observed occasionally [36] Similar exceptions to a linear increase in ln k with 1/T have been

observed for achiral separation as well (Section 2.3.2.2), possibly for similar reasons Unusual temperature-induced behaviors of another kind have been observed for the separation of chiral dihydropyrimidinones on polysaccharide CSPs [178]

Plots of ln k against 1/T were obtained by (1) heating the column from 10 to

50◦C and (2) cooling from 50 to 10◦C; the resulting plots for an ethanol-solvated Chiralpak AD-H column were not superimposable That is, the system exhibited significant hysteresis, which was not the result of conformational changes of the polysaccharide column but rather a slow equilibration of the stationary phase when

T is changed.

Trang 2

14.7.3 Site-Selective Thermodynamics

The discussion above overlooks the fact that enantioselective retention does not necessarily involve a single retention site [179] While this observation is true also for achiral retention, there is an important difference for enantiomeric separation That is, other sites are likely to be non-enantioselective; the latter (referred to as

type I in distinction to enantioselective type II sites [179]) might consist of the

supporting matrix (e.g., silica), linker groups, spacer units, residues stemming from silanol end-capping, and even non-enantioselective binding sites that involve the selector The presence of type-I sites is well known to compromise enantioselectivity While the binding affinity of type-I sites is usually much lower than for type-II sites, the concentration of type-I sites may exceed that of type-II sites by orders

of magnitude, especially for the case of macromolecular selectors such as proteins (Section 14.6.3) Consequently the contribution of type-I sites to overall retention

is usually not negligible, and experimental retention data represent the sum of nonspecific (achiral) and specific (chiral) contributions to k:

and

Values of k in Equations (14.7) and (14.7a) are for the injection of a small

sample (nonoverloaded separation), and subscripts I and II refer to type-I and type-II

sites, respectively; subscripts R and S refer to values for the R- and S-enantiomers,

respectively The experimental enantioselective separation factor is given by α =

k R /k S (for k R > k S), or

α = k I,R + k II,R

k I,S + k II,S

(14.8)

Retention at site I is the same for both enantiomers (i.e., it is non-enantioselective),

so k I,R = k I,S = k I and

α = k I + k II,R

k I + k II,S

(14.8a)

If nonspecific retention is absent, k I = 0 and α = k II,R /k II,S We assume that

the R-enantiomer is more retained so that k II,R /k II,S > 1 For k I > 0, the value

of α in Equation (14.8a) decreases with increasing k I and approaches 1 (no

enantioselectivity) for k I  k II,R

It is obvious that a maximization of enantiomer selectivity can be achieved

either by maximizing the selectivity of the enantioselective type-II sites (k II,R /k II,S)

or by minimizing the contribution to retention of the non-enantioselective type-I sites When the goal is the interpretation of selector enantioselectivity (i.e., for type-II sites) as a function of the solute, selector, and experimental conditions, the

intrinsic thermodynamic enantioselectivity (k II,R /k II,S) is the appropriate quantity,

Trang 3

718 ENANTIOMER SEPARATIONS

while the experimentally observed enantioselectivity (corresponding to α in Eq.

14.8a) can be misleading [179, 180]

From the preceding discussion it is clear that experimental values ofα are only

indirectly related to the various interactions that involve the solute and selector,

as these values of α will reflect achiral as well as chiral interactions of solute

with the stationary phase The relative contributions of chiral and achiral sites to the observed enantioselectivity can be determined by fitting adsorption isotherm data for each enantiomers to a bi-Langmuir (two-site) model over a wide range

in solute concentration This procedure then provides values of k I,R , k II,R , k I,S,

and k II,S for small samples (linear-isotherm values) If isotherms are acquired at different temperatures, values ofH i can be obtained for each enantiomer at each site (I and II) [181, 182] Values of G0

R,S, H0

R,S, and S0

R,S can be derived and used to interpret the basis of enantioselectivity for a given system By this methodology of adsorption isotherm measurements at variable temperatures, Guiochon and coworkers investigated, for example, the thermodynamics of 2,2,2-trifluoro-1-(9-anthryl)-ethanol (TFAE) [182] and 3-chloro-1-phenylpropanol (3CPP) [181] on O −9-tert-butylcarbamoylquinidine-modified silica under

normal-phase conditions site-selectively

REFERENCES

1 C Roussel, J Pierrot-Sanders, I Heitmann, and P Piras, in G Subramanian, Chiral Separation Techniques, 2nd ed., Wiley-VCH, Weinheim, 2001, 95.

2 P Piras and C Roussel, J Pharm Biomed Anal., 46 (2008) 839.

3 T Huybrechts, G T ¨or ¨ok, T Vennekens, R Sneyers, S Vrielynck, and I Somers, LCGC Europe, 20 (2007) 320.

4 H A Wetli and E Francotte, J Sep Sci., 30 (2007) 1255.

5 V A Davankov, Pure Appl Chem., 69 (1997) 1469.

6 B Testa, Principles of Stereochemistry, Wiley-VCH, Weinheim, 1998.

7 M L ¨ammerhofer and W Lindner, in Separation Methods in Drug Synthesis and Purification, K Valk ´o, ed., Elsevier, Amsterdam, 2000, p 337.

8 W Lindner, in Stereoselective Synthesis Series: Methods of Organic Chemistry, Vol.

E21a, G Helmchen, R W Hoffmann, J Mulzer, E Schaumann, eds., (Houben-Weyl), Thieme, Stuttgart, 1995, p 225

9 R J Bopp and J H Kennedy, LCGC, 6 (1988) 514.

10 W Lindner, C Leitner, and G Uray, J Chromatogr., 316 (1984) 605.

11 F Lai, A Mayer and T Sheehan, J Pharm Biomed Anal., 11 (1993) 117.

12 H Br ¨uckner, R Wittner, and H Godel, J Chromatogr., 476 (1989) 3.

13 H Br ¨uckner, T Westhauser, and H Godel, J Chromatogr A, 711 (1995) 201.

14 H Br ¨uckner and C Gah, J Chromatogr., 555 (1991) 81.

15 R Bhushan and H Br ¨uckner, Amino Acids, 27 (2004) 31.

16 N Nimura, H Ogura, and T Kinoshita, J Chromatogr., 202 (1980) 75.

17 O P Kleidernigg, M L ¨ammerhofer, and W Lindner, Enantiomer, 1 (1996) 387.

18 F Bressolle, M Audran, T.-N Pham, and J.-J Vallon, J Chromatogr B, 687 (1996)

303

19 A Karlsson and C Pettersson, Chirality, 4 (1992) 323.

Trang 4

20 C Pettersson and E Heldin, in A Practical Approach to Chiral Separations by Liquid Chromatography, G Subramanian, ed., VCH, Weinheim, 1994, p 279.

21 J N LePage, W Lindner, G Davies, D E Seitz, and B L Karger, Anal Chem., 51

(1979) 433

22 R Marchelli, R Corradini, T Bertuzzi, G Galaverna, A Dossena, F Gasparrini, B

Galli, C Villani, and D Misiti, Chirality, 8 (1996) 452.

23 S Zeng, J Zhong, L Pan, and Y Li, J Chromatogr B, 728 (1999) 151.

24 V A Davankov, Chromatograhia, 27 (1989) 475.

25 P Levkin, N M Maier, W Lindner, and V Schurig, submitted (2008)

26 C E Dalgliesh, J Chem Soc., 132 (1952) 3940.

27 W H Pirkle and T C Pochapsky, Chem Rev., 89 (1989) 347.

28 V A Davankov, Chirality, 9 (1997) 99.

29 C C Pfeiffer, Science, 124 (1956) 29.

30 G Hesse and R Hagel, Justus Liebigs Annalen der Chemie, (1976) 996.

31 Y Okamoto, M Kawashima, and K Hatada, J Am Chem Soc., 106 (1984) 5357.

32 E Yashima, C Yamamoto, and Y Okamoto, J Am Chem Soc., 118 (1996) 4036.

33 C Yamamoto, E Yashima, and Y Okamoto, J Am Chem Soc., 124 (2002) 12583.

34 Y K Ye, S Bai, S Vyas, and M J Wirth, J Phys Chem B., 111 (2007) 1189.

35 R B Kasat, N.-H L Wang, and E I Franses, Biomacromolecules, 8 (2007) 1676.

36 T O’Brien, L Crocker, R Thompson, K Thompson, P H Toma, D A Conlon,

B Feibush, C Moeder, G Bicker, and N Grinberg, Anal Chem., 69 (1997) 1999.

37 E Yashima, M Yamada, Y Kaida, and Y Okamoto, J Chromatogr A, 694 (1995)

347

38 R W Stringham and J A Blackwell, Anal Chem., 68 (1996) 2179.

39 T D Booth and I W Wainer, J Chromatogr A, 741 (1996) 205.

40 T D Booth and I W Wainer, J Chromatogr A, 737 (1996) 157.

41 T D Booth, W J Lough, M Saeed, T A G Noctor, and I W Wainer, Chirality, 9

(1997) 173

42 T D Booth, K Azzaoui, and I W Wainer, Anal Chem., 69 (1997) 3879.

43 Y Okamoto, M Kawashima, and K Hatada, J Chromatogr., 363 (1986) 173.

44 E Francotte and T Zhang, J Chromatogr A, 718 (1995) 257.

45 C Perrin, V A Vu, N Matthijs, M Maftouh, D L Massart, and Y Vander Heyden,

J Chromatogr A, 947 (2002) 69.

46 C Perrin, N Matthijs, D Mangelings, C Granier-Loyaux, M Maftouh, D L Massart,

and Y Vander Heyden, J Chromatogr A, 966 (2002) 119.

47 N Matthijs, C Perrin, M Maftouh, D L Massart, and Y V Heyden, J Chromatogr.

A, 1041 (2004) 119.

48 N Matthijs, M Maftouh, and Y Vander Heyden, J Chromatogr A, 1111 (2006) 48.

49 P Borman, B Boughtelower, K Cattanach, K Crane, K Freebairn, G Jonas, I Mutton,

A Patel, M Sanders, and D Thompson, Chirality, 15 (2003) S1

50 Y Okamoto and E Yashima, Angew Chem Int Ed., 37 (1998) 1021.

51 B Chankvetadze, C Yamamoto, and Y Okamoto, Chem Lett., (2000) 1176.

52 E Yashima, J Chromatogr A, 906 (2001) 105.

53 T Wang, Y W Chen, and A Vailaya, J Chromatogr A, 902 (2000) 345.

54 R M Wenslow, Jr and T Wang, Anal Chem., 73 (2001) 4190.

55 S Caccamese, S Bianca, and G T Carter, Chirality, 19 (2007) 647.

Trang 5

720 ENANTIOMER SEPARATIONS

56 R W Stringham, K G Lynam, and B S Lord, Chirality, 16 (2004) 493

57 K Tachibana and A Ohnishi, J Chromatogr A, 906 (2001) 127.

58 B Chankvetadze, C Yamamoto, and Y Okamoto, J Chromatogr A, 922 (2001) 127.

59 K G Lynam and R W Stringham, Chirality, 18 (2005) 1.

60 T Zhang, D Nguyen, P Franco, T Murakami, A Ohnishi, and H Kurosawa, Anal Chim Acta, 557 (2006) 221.

61 E R Francotte, J Chromatogr A, 906 (2001) 379.

62 P Franco, A Senso, L Oliveros, and C Minguill ´on, J Chromatogr A, 906 (2001)

155

63 T Ikai, C Yamamoto, M Kamigaito, and Y Okamoto, J Chromatogr B, 875 (2008)

2

64 T Zhang, C Kientzy, P Franco, A Ohnishi, Y Kagamihara, and H Kurosawa, J Chromatogr A, 1075 (2005) 65.

65 T Zhang, D Nguyen, P Franco, Y Isobe, T Michishita, and T Murakami, J Pharm Biomed Anal., 46 (2008) 882.

66 P Franco and T Zhang, J Chromatogr B, 875 (2008) 48.

67 A Ghanem and H Aboul-Enein, J Liq Chromatogr., 28 (2005) 2863.

68 A Ghanem, H Hoenen, and H Y Aboul-Enein, Talanta, 68 (2006) 602.

69 K W Phinney, Anal Bioanal Chem., 382 (2005) 639.

70 J L Bernal, L Toribio, M J D Nozal, E M Nieto, and M I Montequi, J Biochem Biophys Meth., 54 (2002) 245.

71 M Maftouh, C Granier-Loyaux, E Chavana, J Marini, A Pradines, Y Vander

Heyden, and C Picard, J Chromatogr A, 1088 (2005) 67.

72 R W Stringham, J Chromatogr A, 1070 (2005) 163.

73 Y Okamoto, S Honda, I Okamoto, and H Yuki, J Am Chem Soc., 103 (1981)

6971

74 G Blaschke, Chem Ber., 107 (1974) 237.

75 G Blaschke, W Br ¨oker, and W Fraenkel, Angew Chem Int Ed., 25 (1986) 830.

76 J N Kinkel, in A Practical Approach to Chiral Separations by Liquid Chromatography,

G Subramanian, ed., VCH, Weinheim, 1994, p 217

77 T Nakano, J Chromatogr A, 906 (2001) 205.

78 R Cirilli, R Costi, R D Santo, M Artico, A Roux, B Gallinella, L Zanitti, and

F L Torre, J Chromatogr A, 993 (2003) 17.

79 F Gasparrini, D Misiti, R Rompietti, and C Villani, J Chromatogr A, 1064 (2005)

25

80 S G Allenmark, S Andersson, P M ¨oller, and D Sanchez, Chirality, 7 (1995) 248.

81 S Andersson, S Allenmark, P Moeller, B Persson, and D Sanchez, J Chromatogr A,

741 (1996) 23

82 S G Allenmark and S Andersson, J Chromatogr A, 666 (1994) 167.

83 M C Millot, J Chromatogr B, 797 (2003) 131.

84 J Haginaka, J Chromatogr B, 875 (2008) 12.

85 J Hermansson, J Chromatogr., 269 (1983) 71.

86 T Miwa, M Ichikawa, M Tsuno, T Hattori, T Miyakawa, M Kayano, and Y

Miyake, Chem Pharm Bull., 35 (1987) 682.

87 P Erlandsson, I Marle, L Hansson, R Isaksson, C Petterson, and G Petterson, J.

Am Chem Soc., 112 (1990) 4573.

Trang 6

88 E Domenici, C Brett, P Salvadori, G Felix, I Cahagne, S Motellier, and I W Wainer,

Chromatographia, 29 (1990) 170.

89 W J M Kremer and L H Janssen, Pharmacological Reviews, 40 (1988) 1.

90 J Haginaka, C Seyama, and T Murashima, J Chromatogr A, 704 (1995) 279.

91 J Haginaka, C Seyama, and N Kanasugi, Anal Chem., 67 (1995) 2539.

92 J Haginaka and H Takehira, J Chromatogr A, 777 (1997) 241.

93 I Kato, J Schrode, W J Kohr, and M Laskowski, Biochemsitry, 26 (1987) 193.

94 J Hermansson, Trends Anal Chem., 8 (1989) 251.

95 M S Waters, D R Sidler, A J Simon, C R Middaugh, R Thompson, L J August,

G Bicker, H J Perpall, and N Grinberg, Chirality, 11 (1999) 224.

96 T A G Noctor and I W Wainer, Pharmaceut Res., 9 (1992) 480.

97 H Matsunaga and J Haginaka, J Chromatogr A, 1106 (2006) 124.

98 F Zsila, and Y Iwao, Biochem Biophys Acta, 1770 (2007) 797.

99 S Andersson, S Allenmark, O Erlandsson, and S Nilsson, J Chromatogr., 498 (1990)

81

100 J Haginaka and N Kanasugi, J Chromatogr A, 694 (1995) 71.

101 K Tomoko, S Akimasa, and M Katsumi, Pharmaceutical Research, 23 (2006) 1038.

102 I Petitpas, A B Bhattacharya, S Twine, M East, and S Curry, J Biol Chem., 276

(2001) 22804

103 J Stahlberg, H Henriksson, C Divne, R Isaksson, G Pettersson, G Johansson, and

T A Jones, J Mol Biol., 305 (2001) 79.

104 J Chen, W A Korfmacher, and Y Hsieh, J Chromatogr B, 820 (2005) 1.

105 D W Armstrong and W DeMond, J Chrom Sci., 22 (1984) 411.

106 C R Mitchell and D W Armstrong, in Chiral Separations, G G ¨ubitz and M G.

Schmid, eds., Vol 243, Humana Press, Totowa, NJ, 2004, p 61

107 M V Rekharsky and Y Inoue, Chem Rev., 98 (1998) 1875.

108 D W Armstrong, L W Chang, S C Chang, X Wang, H Ibrahim, G R Reid, and

T Beesley, J Liq Chromatogr., 20 (1997) 3279.

109 S C Chang, G L Reid, III, S Chen, C D Chang, and D W Armstrong, Trends Anal Chem., 12 (1993) 144.

110 D W Armstrong, S Chen, C Chang, and S Chang, J Liq Chromatogr., 15 (1992)

545

111 D W Armstrong, Y Tang, S Chen, Y Zhou, C Bagwill, and J.-R Chen, Anal Chem.,

66 (1994) 1473

112 D W Armstrong, Y Liu, and K H Ekborgott, Chirality, 7 (1995) 474.

113 K Ekborg-Ott, Y Liu, and D W Armstrong, Chirality, 10 (1998) 434.

114 A Berthod, X Chen, J P Kullman, D W Armstrong, F Gasparrini, I D’Acquarica,

C Villani, and A Carotti, Anal Chem., 72 (2000) 1767.

115 T J Ward and A B Farris, III., J Chromatogr A, 906 (2001) 73.

116 I Ilisz, R Berkecz, and A Peter, J Sep Sci., 29 (2006) 1305.

117 T L Xiao and D W Armstrong, in Chiral Separations, G G ¨ubitz and M G Schmid,

eds., Vol 243, Humana Press, Totowa, NJ, 2004, 113

118 I D’Acquarica, F Gasparrini, D Misiti, M Pierini, C Villani, Adv Chromatogr., Vol.

46, CRC Press, Boca Raton, 2008, 108

119 ASTEC Chirobiotic Handbook, ASTEC, Whippany, NJ, 1997.

Trang 7

722 ENANTIOMER SEPARATIONS

120 T E Beesley, J T Lee, and A X Wang, Chiral Separation Techniques, 2nd ed., G.

Subramanian(ed.), Wiley-VCH, Weinheim, 2001, p 25

121 M E Andersson, D Aslan, A Clarke, J Roeraade, and G Hagman, J Chromatogr.

A, 1005 (2003) 83.

122 C Wang, C Jiang, and D W Armstrong, J Sep Sci., 31 (2008) 1980.

123 H Jiang, Y Li, M Pelzer, M J Cannon, C Randlett, H Junga, X Jiang, and Q C

Ji, J Chromatogr A, 1192 (2008) 230.

124 K H Ekborg-Ott, J P Kullman, X Wang, K Gahm, L He, and D W Armstrong,

Chirality, 10 (1998) 627.

125 A Berthod, Y Liu, C Bagwill, and D W Armstrong, J Chromatogr A, 731 (1996)

123

126 Y Liu, A Berthod, C R Mitchell, T L Xiao, B Zhang, and D W Armstrong, J Chromatogr A, 978 (2002) 185.

127 L R Sousa, G D Y Sogah, D H Hoffman, and D J Cram, J Am Chem Soc., 100

(1978) 4569

128 T Shinbo, T Yamaguchi, K Nishimura, and M Sugiura, J Chromatogr., 405 (1987)

145

129 M H Hyun, J S Jin, and W Lee, J Chromatogr A, 822 (1998) 155.

130 M H Hyun, S C Han, B H Lipshutz, Y.-J Shin, and C J Welch, J Chromatogr A,

910 (2001) 359

131 R J Steffeck, Y Zelechonok, and K H Gahm, J Chromatogr A, 947 (2002) 301.

132 M H Hyun, J Sep Sci., 26 (2003) 242.

133 Y Machida, H Nishi, and K Nakamura, Chirality, 11 (1999) 173.

134 W Pirkle and D House, J Org Chem., 44 (1979) 1957.

135 F Mikes and G Boshart, J Chromatogr., 149 (1978) 455.

136 W H Pirkle, M H Hyun, A Tsipouras, B C Hamper, and B Banks, J Pharm Biomed Anal., 2 (1984) 173.

137 W H Pirkle and T C Pochapsky, J Am Chem Soc., 109 (1987) 5975.

138 W H Pirkle and S R Selness, J Org Chem., 60 (1995) 3252.

139 W H Pirkle, P G Murray, and S R Wilson, J Org Chem., 61 (1996) 4775.

140 W H Pirkle, D W House, and J M Finn, J Chromatogr., 192 (1980) 143.

141 W H Pirkle and R Dappen, J Chromatogr., 404 (1987) 107.

142 C J Welch, J Chromatogr A, 666 (1994) 3.

143 W H Pirkle, T C Pochapsky, G S Mahler, D E Corey, D S Reno, and D M

Alessi, J Org Chem., 51 (1986) 4991.

144 W H Pirkle and C J Welch, Tetrahedron: Asymmetry, 5 (1994) 777.

145 M E Koscho, P L Spence, and W H Pirkle, Tetrahedron Asymmetry, 16 (2005)

3147

146 F Gasparrini, D Misiti, and C Villani, Chirality, 4 (1992) 447.

147 F Gasparrini, D Misiti, C Villani, and F La Torre, J Chromatogr., 539 (1991) 25.

148 N M Maier and G Uray, J Chromatogr A, 732 (1996) 215.

149 F Gasparrini, D Misiti, and C Villani, J Chromatogr A, 906 (2001) 35.

150 P Macaudiere, A Tambute, M Caude, R Rosset, M A Alembik, and I W Wainer,

J Chromatogr., 371 (1986) 177.

Trang 8

151 A M Blum, K G Lynam, and E C Nicolas, Chirality, 6 (1994) 302.

152 M L ¨ammerhofer and W Lindner, J Chromatogr A, 741 (1996) 33.

153 C V Hoffmann, M L ¨ammerhofer, and W Lindner, J Chromatogr A, 1161 (2007)

242

154 C V Hoffmann, R Pell, M L ¨ammerhofer, and W Lindner, Anal Chem., submitted

(2008)

155 M L ¨ammerhofer, N M Maier, and W Lindner, Nachrichten aus der Chemie, 50

(2002) 1037

156 A Mandl, L Nicoletti, M L ¨ammerhofer, and W Lindner, J Chromatogr A, 858

(1999) 1

157 N M Maier, L Nicoletti, M L ¨ammerhofer, and W Lindner, Chirality, 11 (1999)

522

158 M L ¨ammerhofer, P Franco, and W Lindner, J Sep Sci., 29 (2006) 1486.

159 J Lesnik, M L ¨ammerhofer, and W Lindner, Anal Chim Acta, 401 (1999) 3.

160 R Wirz, T Buergi, W Lindner, and A Baiker, Anal Chem., 76 (2004) 5319.

161 N M Maier, S Schefzick, G M Lombardo, M Feliz, K Rissanen, W Lindner, and

K B Lipkowitz, J Am Chem Soc., 124 (2002) 8611.

162 K Akasaka, K Gyimesi-Forras, M L ¨ammerhofer, T Fujita, M Watanabe, N Harada,

and W Lindner, Chirality, 17 (2005) 544.

163 W Bicker, I Chiorescu, V B Arion, M L ¨ammerhofer, W Lindner, Tetrahedron: Asymmetry, 19 (2008) 97.

164 W R Oberleitner, N M Maier, and W Lindner, J Chromatogr A, 960 (2002) 97.

165 C Czerwenka, M L ¨ammerhofer, N M Maier, K Rissanen, and W Lindner, Anal Chem., 74 (2002) 5658.

166 M L ¨ammerhofer and W Lindner, Adv Chromatogr., Vol 46, CRC Press, Boca Raton,

2008, 1

167 K Gyimesi-Forras, K Akasaka, M L ¨ammerhofer, N M Maier, T Fujita, M

Watan-abe, N Harada, and W Lindner, Chirality, 17 (2005) S134

168 R Arnell, P Forss´en, T Fornstedt, R Sardella, M L ¨ammerhofer, and W Lindner, J Chromatogr A, 1216 (2009) 3480.

169 K Gyimesi-Forras, J K ¨ok ¨osi, G Szasz, A Gergely, and W Lindner, J Chromatogr A,

1047 (2004) 59

170 Gyimesi-Forras, N M Maier, J K ¨ok ¨osi, A Gergely, and W Lindner, Chirality, 21

(2009) 199

171 V A Davankov, Enantiomer, 5 (2000) 209.

172 V A Davankov, in Chiral Separations, G G ¨ubitz and M G Schmid, eds., Vol 243,

Humana Press, Totowa, NJ, 2004, 207

173 V A Davankov, J Chromatogr A, 666 (1994) 55.

174 G G ¨ubitz and M G Schmid, in Chiral Separation Techniques, 3rd ed., G Subramanian,

ed., Wiley-VCH, Weinheim, Germany, 2007, p 155

175 W H Pirkle and P G Murray, J High Resol Chromatogr., 16 (1993) 285.

176 R W Stringham and J A Blackwell, Anal Chem., 68 (1996) 2179.

177 O Gyllenhaal and M Stefansson, Chirality, 17 (2005).

178 F Wang, D Yeung, J Han, D Semin, J S McElvain, and J Cheetham, J Sep Sci., 31

(2008) 604

Trang 9

724 ENANTIOMER SEPARATIONS

179 G G ¨otmar, T Fornstedt, and G Guiochon, Chirality, 12 (2000) 558.

180 G G ¨otmar, T Fornstedt, and G Guiochon, Anal Chem., 72 (2000) 3908.

181 L Asnin, K Kaczmarski, A Felinger, F Gritti, and G Guiochon, J Chromatogr A,

1101 (2006) 158

182 G G ¨otmar, L Asnin, and G Guiochon, J Chromatogr A, 1059 (2004) 43.

Trang 10

CHAPTER FIFTEEN

PREPARATIVE

SEPARATIONS

with Geoff Cox

15.1 INTRODUCTION, 726

15.1.1 Column Overload and Its Consequences, 726

15.1.2 Separation Scale, 727

15.2 EQUIPMENT FOR PREP-LC SEPARATION, 730

15.2.1 Columns, 730

15.2.2 Sample Introduction, 731

15.2.3 Detectors, 733

15.2.4 Fraction Collection, 735

15.2.5 Product Recovery, 735

15.3 ISOCRATIC ELUTION, 737

15.3.1 Sample-Weight and Separation, 737

15.3.2 Touching-Peak Separation, 739

15.4 SEVERELY OVERLOADED SEPARATION, 748

15.4.1 Recovery versus Purity, 748

15.4.2 Method Development, 749

15.5 GRADIENT ELUTION, 751

15.5.1 Isocratic and Gradient Prep-LC Compared, 752

15.5.2 Method Development for Gradient Prep-LC, 753

15.6 PRODUCTION-SCALE SEPARATION, 754

Introduction to Modern Liquid Chromatography, Third Edition, by Lloyd R Snyder,

Joseph J Kirkland, and John W Dolan

Copyright © 2010 John Wiley & Sons, Inc.

725

Ngày đăng: 04/07/2014, 01:20

TỪ KHÓA LIÊN QUAN