1. Trang chủ
  2. » Khoa Học Tự Nhiên

Introduction to Modern Liquid Chromatography, Third Edition part 71 docx

10 255 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 134,16 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

656 BIOCHEMICAL AND SYNTHETIC POLYMER SEPARATIONS13.10.3.5 Chemical Composition as a Function of Molecular Size A copolymer typically exhibits both molecular-weight and chemical-composit

Trang 1

656 BIOCHEMICAL AND SYNTHETIC POLYMER SEPARATIONS

13.10.3.5 Chemical Composition as a Function of Molecular Size

A copolymer typically exhibits both molecular-weight and chemical-composition distributions Depending on polymerization conditions, the chemical composition may or may not vary with polymer molecular weight To investigate the presence

of such chemical heterogeneity, we can couple SEC with a spectroscopic technique that yields chemical-composition information Such a combined technique provides the average composition at each point in the SEC chromatogram, that is, for each molecular size If only one of two monomers can be detected by UV, the combination of a UV detector and another concentration-sensitive detector (e.g., refractive index, RI) can in principle be used to follow the concentration of each monomer Additional information can be obtained from combining SEC with either FTIR or NMR spectroscopy

Although information about chemical composition as a function of molecular size can be very valuable, even the smallest SEC fractions can contain a variety of molecules that vary in both chemical composition and molecular weight That is, differences in chemical composition can result in molecules with different molecular weights having the same molecular ‘‘size’’ in solution, as illustrated in Figure 13.49

A fraction obtained from a high-resolution SEC separation (rectangular box in Fig 13.49) will contain molecules with the same molecular size (gyration radius

R g) in solution, but with different molecular weights It is often important to know the chemical-composition distribution, rather than just the average chemical com-position Likewise the functionality-type distribution (FTD) may be more important than the average number of functional groups per molecule This will be especially true if the chemical composition or the number of functional groups per molecule is known (or suspected) to vary An example is reactive (pre-)polymers that are used in many formulations for sealants, adhesives, and coatings Molecules without reactive (functional) groups will not react, molecules with one functional group will locally terminate the polymerization process, molecules with two functional groups will

0.025

0.020

0.015

0.010

0.005

0.000

R g

Molecular weight (x10−3)

homopolymer A

homopolymer B

co-polymers of A and B

fraction

Figure13.49 Schematic illustration of the relationship between molecular size and molecu-lar weight for (co-)polymers of different composition Lines represent (from top to bottom) homopolymer A, copolymer AB (75:25), AB (50:50), AB (25:75), and homopolymer B

Trang 2

sustain the polymerization, and molecules with more than two functional groups promote the formation of resinous polymeric networks Knowledge of only the average number of functional groups per molecule would be insufficient in this case

13.10.4 Polymer Separations by Two-Dimensional Chromatography

In comprehensive two-dimensional liquid chromatography (LC× LC; Sections 9.3.10, 13.4.5), the entire sample is subjected to two different successive separations, while the separation obtained in the first dimension is preserved To simultaneously determine two mutually dependent distributions, such as the combination of MWD and CCD (MWD× CCD), a technique that separates according to molecular weight (e.g., SEC) must be combined with one that separates (largely) according to com-position, such as i-LC Combination of the two separations (i-LC× SEC) then yields a two-dimensional chromatogram that represents an analysis of the sample according to both molecular weight and chemical composition; an example is shown

in Figure 13.48 Corresponding one-dimensional separations are shown for SEC

at the side, and for i-LC at the top of Figure 13.48 While neither of the latter one-dimensional separations provides an adequate separation of the total sample, the corresponding two-dimensional separation does Another i-LC× SEC separa-tion is shown in Figure 13.50, for a more complex sample: chain-end-funcsepara-tionalized poly(methyl methacrylates) The horizontal time-axis for the i-LC separation is indicative of the chemical composition of the copolymer (note labels at top of figure for the number of functional groups in the molecule); while the vertical time-axis for the SEC separation is related to its molecular weight

Two-dimensional chromatograms such as those in Figures 13.48 and 13.50 can provide a useful qualitative picture of the composition of a copolymer Different samples can be compared in great detail, and the results of such a comparison

groups per molecule

1.2

1.1

1.0

0.9

0.8

0.7

i -LC (hr)

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Figure13.50 Two-dimensional separation of chain-end-functionalized poly(methyl

methacrylates) The dashed lines indicate areas in the 2D-chromatogram that correspond

to molecules with zero, one or two functional groups, as indicated at the top of the figure Adapted from [172]

Trang 3

658 BIOCHEMICAL AND SYNTHETIC POLYMER SEPARATIONS

can be used to better understand the properties of polymeric materials or related polymerization processes [173] Unfortunately, it is much more difficult to obtain

quantitative information from such figures, as a number of complications arise First,

the relationship between SEC retention time and molecular weight depends also on

polymer chemical composition and topology (e.g., degree of branching) Second,

detector response also depends on these polymer properties

To solve the first problem (retention not completely defined by molecular weight), we must know retention in SEC as a function of solute molecular weight

and chemical composition; this can be accomplished by the use of appropriate

copolymer standards The second problem (varying response factor) is more of

a challenge When homopolymers are studied, the response factor may be nearly constant (i.e., independent of molecular weight) for UV detection However, many polymers lack chromophors, which necessitates the use of refractive-index (RI) detection Here the response factor (usually referred to as the refractive-index

increment or dn/dc) tends to be nonconstant in the oligomeric region.

REFERENCES

1 G T Hermanson, Bioconjugate Techniques, Academic Press, San Diego, CA, 1996.

2 L R Snyder and M A Stadalius, High-Performance Liquid Chromatography:

Advances and Perspectives, Vol 4, C Horv ´ath, ed Academic Press, San Diego,

1986, p 195

3 L R Snyder and J W Dolan, High-Performance Gradient Elution, Wiley-Interscience,

Hoboken, NJ, 2007

4 J O Konz, R C Livingood, A J Bett, A R Goerke, M E Laska, and S L Sagar,

Hum Gene Ther., 16 (2005) 1346.

5 E I Trilisky and A M Lenhoff, J.Chromatogr., 1142 (2007) 2.

6 M A Stadalius, B F D Ghrist, and L R Snyder, J Chromatogr., 387 (1987) 21.

7 J S Richardson, Adv Protein Chem., 34 (1981) 167.

8 W R Melick-Adayan, V V Barynin, A A Vagin, V V Borisov, B K Vainshtein, B

K Fita, M R N Murthy, and M G Rossman, J Mol Biol., 188 (1986) 63.

9 R L Cunico, K M Gooding, and T Wehr, Basic HPLC and CE of Biomolecules, Bay

Bioanalytical Laboratory, Richmond, CA, 1998

10 M T W Hearn and B Grego, J Chromatogr., 282, (1983) 541.

11 W Doerfler, in Medical Microbiology, 4th ed., S Baron (ed.), Univ TX Medical

Branch, Galveston, 1996

12 N B Afeyan, N F Gordon, I Mazsaroff, L Varady, S P Fulton, Y B Yang, and F

E Regnier, J Chromatogr., 519, (1990) 1.

13 F B Rudolph, D P Wiesenborn, J Greenhut, and M L Harrison, in HPLC of

Biological Macromolecules, K M Gooding and F E Regnier, eds., Dekker, New

York, 1990, p 333

14 F E Regnier, Science, 238 (1987).

15 M A Stadalius, H S Gold, and L R Snyder, J Chromatogr., 296 (1984) 31.

16 M Kawakatsu, H Kotaniguchi, H Freiser, and K M Gooding, J Liq Chromatogr.,

18 (1995) 633

17 A Apfel, S Fischer, G Goldberg, P C Goodley, and F E Kuhlmann, J Chromatogr.

A, 712 (1995) 177.

Trang 4

18 D V McCalley, LCGC, 23 (2005) 162.

19 D V McCalley, J Chromatogr A, 1075 (2005) 57.

20 D Guo, C T Mant, and R S Hodges, J Chromatogr., 386 (1987) 205.

21 M T W Hearn, in HPLC of Biological Macromolecules, 2nd ed., K M Gooding and

F E Regnier, eds., Dekker, New York, 2002, pp 195–312

22 J E Rivier, J Liq Chromatogr., 1 (1978) 343.

23 D Guo, C T Mant, A K Taneja, J M R Parker, and R S Hodges, J Chromatogr.,

359 (1986) 499

24 W Hancock, R C Chloupek, J J Kirkland, and L R Snyder, J Chromatogr A, 686

(1994) 31

25 S Terabe, S Nishi, and T Ando, J Chromatogr., 212 (1981) 295.

26 J L Glajch, M A Quarry, J F Vasta, and L R Snyder, Anal Chem., 58 (1986) 280.

27 C T Wehr and L Correia, LC at Work, LC-121, Varian, Walnut Creek, CA 1980.

28 D Guo, C T Mant, A K Taneja, and R S Hodges, J Chromatogr., 359 (1986) 519.

29 C T Mant, T W L Burke, J A Black, and R S Hodges, J Chromatogr., 458 (1988)

193

30 M T W Hearn and B Grego, J Chromatogr., 296 (1984) 61.

31 W R Melander, J Jacobson, and C Horv ´ath, J Chromatogr., 234 (1982) 269.

32 S Cohen, K Benedek, Y Tapuhi, J C Ford, and B L Karger, Anal Biochem., 144

(1985) 275

33 W G Burton, K D Nugent, T K Slattery, B F Johnson, and L R Snyder,

J.Chromatogr., 443 (1988) 363.

34 K D Nugent, W G Burton, T K Slattery, B F Johnson, and L R Snyder,

J.Chromatogr., 443 (1988) 381.

35 L J Licklider, C C Thoreen, J Peng, and S P Gygi, Anal Chem., 74 (2002) 3076.

36 B F D Ghrist and L R Snyder, J Chromatogr., 459 (1989) 43.

37 P Gagnon, Purification Tools for Monoclonal Antibodies, Validated Biosystems,

Tuscon, AZ, 1996

38 W Kopaciewicz, M A Rounds, J Fausnaugh, and F E Regnier, J Chromatogr., 266

(1983) 3

39 C D Scott in Modern Practice of Liquid Chromatography, J J Kirkland, ed.,

Wiley-Interscience, New York, 1971

40 W Muller, J Chromatogr., 510 (1990) 133.

41 M T Ueda and Y Ishida, J Chromatogr., 386 (1987) 273.

42 R Chicz and F Regnier, Met Enzymol., 182 (1990) 392.

43 L R Snyder, J J Kirkland, and J L Glajch, Practical HPLC Method Development,

2nd ed., Wiley-Interscience, New York, 1997, p 515

44 L Sluyterman and O Elermsa, J Chromatogr., 150 (1978) 17.

45 L Sluyterman and J Wijdenes, J Chromatogr., 150 (1978) 31.

46 L Sluyterman and J Wijdenes, J Chromatogr., 206 (1981) 429.

47 L Sluyterman and J Wijdenes, J Chromatogr., 206 (1981) 441.

48 Chromatofocusing with Polybuffer and PBE Handbook, ed AB, Publication

18-1009-07, Amersham Pharmacia Biotech, Uppsala, Sweden

49 P Gagnon, Quarterly Resource Guide to Downstream Processing, Validated

Biosys-tems, Tuscon, AZ, 1999

Trang 5

660 BIOCHEMICAL AND SYNTHETIC POLYMER SEPARATIONS

50 N G Good, G D Winget, W Winter, T N Connally, S Izawa, and R M M Singh,

Biochemistry, 5 (1966) 467.

51 T Kawasaki and S Takahashi, Eur J Biochem., 152 (1985) 361.

52 T Kawasaki, J Chromatogr., 151 (1978) 95.

53 T Kawasaki, J Chromatogr., 157 (1978) 7.

54 M J Gorbunoff, Anal Biochem., 136 (1984) 425.

55 K M Gooding, Z El Rassi, and C Horv ´ath, in HPLC of Biologicial Macromolecules,

2nd ed., K M Gooding and F E Regnier, eds., Dekker, New York, 2002, pp 247–280

56 L Kagedal, in Protein Purification, J C Janson and L Ryden, eds., VCH, New York,

1989, pp 227–251

57 F H Arnold, Biotechnology, 151 (1991) 9.

58 J Porath and B Olin, Biochemistry, 22 (1983) 162.

59 E Hochuli, W Bannwarth, H Dobeli, R Gentz, and D Stuber, Biotechnology, 6

(1988) 1321

60 B Bodenmiller, L N Mueller, M Mueller, B Domon, and R Aebersold, Nature

Methods, 4 (2007) 231.

61 J Porath, J Chromatogr., 443 (1988) 3.

62 Z El Rassi and C Horv ´ath, J Chromatogr., 359 (1986) 241.

63 A Tiselius, Ark Kem Min Geol., 26B (1948).

64 J Porath, Biochem Biophys Acta, 39 (1960) 193.

65 B Gelotte, J Chromatogr., 3 (1960) 330.

66 Y Kato, T Kitamura, and T Hashimoto, J Chromatogr., 266 (1983) 49.

67 Y Kato, T Kitamura, and T Hashimoto, J Chromatogr., 292 (1984) 418.

68 R E Shansky, S.-L Wu, A Figueroa, and B L Karger, in HPLC of Biological

Macromolecules, K M Gooding and F E Regnier, eds., Dekker, New York, 1990, p.

95

69 H S Frank and M J Evans, J Chem Phys., 13 (1945) 507.

70 S Shaltiel, Z Er-el, Proc Natl Acad Sci USA, 52 (1973) 430.

71 D L Gooding, M N Schmuck, M P Nowlan, and K M Gooding, J Chromatogr.,

359 (1986) 331

72 J L Fausnaugh and F E Regnier, J Chromatogr., 359 (1986) 131.

73 D B Wetlaufer and M R Koenigbauer, J Chromatogr., 359 (1986) 55.

74 S L Wu, K Benedek, and B L Karger, J Chromatogr., 359 (1986) 3.

75 A J Alpert, J Chromatogr., 499 (1990) 177.

76 M Lafosse, B Herbreteau, M Dreux, and L Morinallorym, J Chromatogr., 472

(1989) 209

77 W Naidong, J Chromatogr B, 796 (2003) 209.

78 B A Olsen, J Chromatogr A, 913 (2001) 113.

79 T Yoshida, Anal Chem., 68 (1997) 3038.

80 H Tanaka, X Zhou, and O Masayoshi, J Chromatogr A, 987 (2003) 119.

81 T K Chambers and J S Fritz, J Chromatogr A, 797 (1998) 139.

82 M Wuhrer, C A M Koeleman, A M Deelder, and C N Hokke, Anal Chem., 76

(2004) 833

83 M Wuhrer, C A M Koeleman, C H Hokke, and A M Deelder, Anal Chem., 77

(2005) 886

Trang 6

84 A J Ytterberg, R R Ogorzalek-Loo, P Boontheung, J Wohlschlegel, and J A Loo, abstract WP 523, 55th ASMS Conference on Mass Spectrometry and Allied Topics, Indianapolis, 2007

85 C T Mant, J R Litowski, and R S Hodges, J Chromatogr A, 816 (1998) 65.

86 C A Mizzen, A J Alpert, L Levesque T P A Kruck, and D R McLachlan, J.

Chromatogr B, 744 (2000) 33.

87 A Jungbauer, C Machold, and R Hahn, J Chromatogr A, 1079 (2005) 221.

88 H Lindner, B Sarg, C Meraner, and W Helliger, J Chromatogr A, 743 (1996) 137.

89 H Lindner, B Sarg, C Meraner, and W Helliger, J Chromatogr A, 782 (1997) 55.

90 B Sarg, W Helliger, H Talasz, E Kooutzamani, and H Lindner, J Biol Chem., 279

(2004) 53–58

91 A J Alpert, Anal Chem., 80 (2008) 62.

92 A J Alpert, G Mitulovic, and M Mechtler, poster P2412-W, 32nd Annual Symposium

on High Performance Liquid Phase Separations and Related Techniques, Baltimore, 2008

93 U Lewandrowski, K Lohrig, R P Zahedi, D Wolters, and A Sickmann, Clin.

Proteom., 4 (2008) 25.

94 P H O’Farrell, J Biol Chem., 250 (1975) 4007.

95 M Gilar, P Olivova, A E Daly, and J C Gebler, Anal Chem., 77 (2005) 6426.

96 S P Gygi, B Rist, S A Gerber, F Turecek, M H Gelb, and R Aebersold, Nat.

Biotechnol., 17 (1999) 994.

97 A J Link, J Eng, D M Schieltz, E Carmac, G J Mize, D R Morris, B M Garvik,

and J R Yates, Nat Biotechnol., 17 (1999) 676.

98 D A Wolter, M P Washburn, and J R Yates, Anal Chem., 73 (2001) 5683.

99 M P Washburn, D Wolters, and J R Yates, Nat Biotechnol., 19 (2001) 5683.

100 M T Davis, J Beierle, E T Bures, M D McGinley, J Mort, J H Robinson, C S

Spahr, W Yu, R Luethy, and S D Patterson, J Chromatogr B, 752 (2001) 281.

101 G J Opiteck and J W Jorgenson, Anal Chem., 69 (1997) 2283.

102 G J Opiteck, S M Ramirez, J W Jorgenson, and M A Moseley Anal Biochem.,

258 (1998) 349

103 K Wagner, T Miliotis, G Marko-Varga, R Bischoff, and K K Unger, Anal.Chem.,

74 (2002) 809

104 R Bischoff and L W McLaughlin, in HPLC of Biologicial Macromolecules, K M.

Gooding and F E Regnier, eds., Dekker, New York, 1990, pp 641–667

105 R Hecker, M Colpan, and D Riesner, J Chromatogr., 326 (1985) 251.

106 S Nakatani, T Tsuda, Y Yamasaki, M Moriyama, H Watanabe, and Y Kato,

Technical Report 78, TosoHaas, Tokyo, 1995.

107 R R Drager and F E Regnier, Anal Biochem., 145 (1985) 47.

108 G Zon, in Characterization of Proteins: New Methods in Peptide Mapping, W S.

Hancock, ed., CRC Press, Boca Raton, 1995, p 301

109 W Xiao and P J Oefner, Human Mutation, 17 (2001) 439.

110 A Premstaller and P J Oefner, in Methods in Molecular Biology, 211, P.-Y Kwok,

ed., Humana Press, Totowa, NJ, 2002, p 15

111 R L Pearson, J F Weiss, and A D Kelmers, Biochim Biophys Acta, 228 (1971)

770

112 R Bischoff and L W McLaughlin, Anal Biochem., 151 (1985) 526.

113 J D Pearson, M Mitchell, and F E Regnier, J Liq Chromatogr., 6 (1983) 1441.

Trang 7

662 BIOCHEMICAL AND SYNTHETIC POLYMER SEPARATIONS

114 R Bischoff and L W McLaughlin, J Chromatogr., 296 (1984) 329.

115 Z el Rassi and C Horv ´ath, J Chromatogr., 326 (1985) 79.

116 Z el Rassi and C Horv ´ath, Chromatographia, 19 (1984) 9.

117 S C Churms, CRC Handbook of Chromatography: Carbohydrates, Vol 2, CRC Press,

Boca Raton, 1991

118 S C Churms, J Chromatogr A, 720 (1996) 75.

119 K Koizumi, T Utamura, Y Kubota, and S Hizukuri, J Chromatogr., 409 (1987) 396.

120 C Brons and C Olieman, J Chromatogr., 159 (1983) 79.

121 D W Armstrong and H L Jin, J Chromatogr., 462 (1989) 219.

122 S Honda and S Suzuki, Anal Biochem., 142 (1984).

123 A S Feste and I Khan, J Chromtogr., 607 (1992) 7.

124 Guide to Aminex® HPLC Columns, Bulletin 1928, Bio-Rad Laboratories.

125 T Jupille, Amer Lab., 13 (1981) 80.

126 R W Goulding, J Chromatogr., 103 (1975) 229.

127 Analysis of Carbohydrates by High Performance Anion Exchange Chromatography

with Pulsed Amperometric Detection (HPAE-PAD), Dionex Technical Note 20 (2000).

128 Glycoprotein Oligosaccharide Analysis Using High-Performance Anion-Exchange

Chromatography, Dionex Technical Note 42 (1997).

129 Optimal Settings for Pulsed Amperometric Detection of Carbohydrates Using the

Dionex ED40 Electrochemical Detector, Dionex Technical Note 21 (1998).

130 B G Huyghe, X Liu, S Sutjipto, B J Sugarman, M T Horn, H M Shepard, C J

Scandella, and P Shabram, Hum Gene Ther., 6 (1995) 1403.

131 W W Yau, J J Kirkland, and D D Bly, Modern Size-Exclusion Liquid

Chromatog-raphy, Wiley-Interscience, New York, 1979.

132 J Porath and P Flodin, Nature (London), 183, (1959) 1657.

133 S Hjerten and R Mosbach, Anal Biochem., 3, (1962) 109.

134 S Hjerten, Arch Biochem Biophys., 99, (1962) 466.

135 E L Johnson and R L Stevenson, in Basic Liquid Chromatography, Varian, Walnut

Creek, CA, 1978, p 150

136 L Hagel and J C Janson, in Chromatography, 5th ed., E Heftmann, ed., Elsevier,

Amsterdam, 1992, A267

137 K M Gooding and F E Regnier, in HPLC of Biological Macromolecules, 2nd ed., K.

M Gooding and F E Regnier, eds., Dekker, New York, 2002, p 59

138 B F D Ghrist, M A Stadalius, and L R Snyder, J Chromatogr., 387 (1987) 1.

139 R L Cunico, K M Gooding, and T Wehr, in Basic HPLC and CE of Biomolecules,

Bay Bioanalytical Laboratory, Richmond, CA, 1999, p 135

140 E Pfannkoch, K C Lu, F E Regnier, and H G Barth, J Chromatogr Sci., 18, (1980)

430

141 E Folta-Stogniew and K R Williams, J Biomol Techniques, 10 (1999) 51.

142 V N Uversky, Biochem., 32 (1993) 13288.

143 L Hagel, J Chromatogr., 648, (1993) 19.

144 B Sebille and N Thuaud, In Handbook of HPLC for the Separation of Amino Acids,

Peptides, and Proteins, Vol 2, W S Hancock, ed., CRC Press, Boca Raton, 1984, pp.

379–391

145 J P Hummel and W J Dreyer, Biochim Biophys Acta, 63 (1962) 530.

146 J Curling., Biopharm International, (Feb 2007) 10.

Trang 8

147 G Walsh., Appl Microbiol Biotechnol., 67 (2005) 151.

148 L Hagel, G Jagschies, and G K Sofer, Handbook of Process Chromatography:

Devel-opment, Manufacturing, Validation and Economics, 2nd ed., Elsevier, Amsterdam,

2007

149 H Chase, Trends Biotechnol., 12 (1994) 296.

150 A Jungbauer and E Boschetti., J Chromatogr B, 662 (1994) 143.

151 A Jungbauer, J Chromatogr A, 1065 (2005) 3.

152 P Lu, C D Carr, P Chadwick, M Li, and K Harrison, BioPharm., (Sep 2001) 19.

153 J Rivier and R McClintock, J Chromatogr., 268 (1983) 112.

154 J Rivier, R McClintock, R Galyean, and H Anderson J Chromatogr., 288 (1983)

303

155 E I Grimm and E E Logsdon, US Patent 4,612,367 (1986)

156 P H Lai and T W Strickland, US Patent 4,667,016 (1987)

157 R Bischoff, D Clesse, O Whitechurch, P Lepage, and C Roitsch, J Chromatogr A,

476 (1989) 245

158 D I Urdal, D Mochizuki, P J Conlon, C J March, M L Remerowski, J Eisenman,

C Ramthun, and S Gillis, J Chromatogr A, 296 (1984) 171.

159 S Hershenson, Z Shaked, and J Thomson, US Patent 4,961,969 (1990)

160 C V Olsen, D H Reifsnyder, E Canova-Davis, V T Ling, and S E Builder, J.

Chromatogr A 675 (1994) 101.

161 V Price, D Mochizuki, C J March, D Cosman, M C Deeley, R Klinke, W

Clevenger, S Gillis, P Baker, and D Urdal, Gene, 55 (1987) 28.

162 E P Kroeff, R A Owens, E L Campbell, R D Johnson, and H I Marks, J.

Chromatogr., 461 (1989) 45.

163 J Brange, The Physico-chemical and Pharmaceutical Aspects of Insulin, Springer,

Berlin, 1987

164 E P Kroeff and R E Chance, Proceedings of the FDA-USP Workshop on Drug and

Reference Standards for Insulins, Somatotrophins and Thyroid-Axis Hormones, United

States Pharmacopeia Convention, Rockville, MD, 1982, pp 148–162

165 Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or

Holding Of Drugs, 21 CFR Part 210, http://www.fda.gov/cder/dmpq/cgmpregs.htm.

166 Current Good Manufacturing Practice for Finished Pharmaceuticals, 21 CFR Part 211,

http://www.fda.gov/cder/dmpq/cgmpregs.htm

167 International Organization for Standardization, http://www.iso.org/iso/home.htm

168 M T W Hearn, Reversed-Phase High Performance Liquid Chromatography,

Aca-demic Press, New York, 1984

169 A M Striegel, W W Yau, J J Kirkland, and D D Bly, Modern Size-Exclusion Liquid

Chromatography, 2nd ed., Wiley-Interscience, New York, 2009.

170 T H Mourey, Int J Polym Anal Charact., 9 (2004) 97.

171 A M Striegel, Anal Chem., 77 (2005) 104A.

172 W F Reed, in Multiple Detection in Size-Exclusion Chromatography, A M Striegel,

ed., ACS, New York, 2005, ch 2

173 W M C Decrop et al., submitted for publication

174 X Jiang, P J Schoenmakers, X Lou, V Lima, J L J van Dongen, and J Brokken-Zijp,

J Chromatogr., 1055 (2004) 123.

175 X Jiang, A van der Horst, V Lima, and P J Schoenmakers, J Chromatogr, 1076

(2005) 51

Trang 10

CHAPTER FOURTEEN

ENANTIOMER

SEPARATIONS

with Michael L ¨ammerhofer, Norbert M.Maier, and Wolfgang Lindner

14.1 INTRODUCTION, 666

14.2 BACKGROUND AND DEFINITIONS, 666

14.2.1 Isomerism and Chirality, 667

14.2.2 Chiral Recognition and Enantiomer Separation, 669

14.3 INDIRECT METHOD, 670

14.4 DIRECT METHOD, 675

14.4.1 Chiral Mobile-Phase-Additive Mode (CMPA), 675

14.4.2 Chiral Stationary-Phase Mode (CSP), 677

14.4.3 Principles of Chiral Recognition, 679

14.5 PEAK DISPERSION AND TAILING, 681

14.6 CHIRAL STATIONARY PHASES

AND THEIR CHARACTERISTICS, 681

14.6.1 Polysaccharide-Based CSPs, 682

14.6.2 Synthetic-Polymer CSPs, 689

14.6.3 Protein Phases, 691

14.6.4 Cyclodextrin-Based CSPs, 697

14.6.5 Macrocyclic Antibiotic CSPs, 699

14.6.6 Chiral Crown-Ether CSPs, 706

14.6.7 Donor-Acceptor Phases, 707

14.6.8 Chiral Ion-Exchangers, 711

14.6.9 Chiral Ligand-Exchange CSPs (CLEC), 713

14.7 THERMODYNAMIC CONSIDERATIONS, 715

14.7.1 Thermodynamics of Solute-Selector Association, 715

Introduction to Modern Liquid Chromatography, Third Edition, by Lloyd R Snyder,

Joseph J Kirkland, and John W Dolan

Copyright © 2010 John Wiley & Sons, Inc.

665

Ngày đăng: 04/07/2014, 01:20

TỪ KHÓA LIÊN QUAN