656 BIOCHEMICAL AND SYNTHETIC POLYMER SEPARATIONS13.10.3.5 Chemical Composition as a Function of Molecular Size A copolymer typically exhibits both molecular-weight and chemical-composit
Trang 1656 BIOCHEMICAL AND SYNTHETIC POLYMER SEPARATIONS
13.10.3.5 Chemical Composition as a Function of Molecular Size
A copolymer typically exhibits both molecular-weight and chemical-composition distributions Depending on polymerization conditions, the chemical composition may or may not vary with polymer molecular weight To investigate the presence
of such chemical heterogeneity, we can couple SEC with a spectroscopic technique that yields chemical-composition information Such a combined technique provides the average composition at each point in the SEC chromatogram, that is, for each molecular size If only one of two monomers can be detected by UV, the combination of a UV detector and another concentration-sensitive detector (e.g., refractive index, RI) can in principle be used to follow the concentration of each monomer Additional information can be obtained from combining SEC with either FTIR or NMR spectroscopy
Although information about chemical composition as a function of molecular size can be very valuable, even the smallest SEC fractions can contain a variety of molecules that vary in both chemical composition and molecular weight That is, differences in chemical composition can result in molecules with different molecular weights having the same molecular ‘‘size’’ in solution, as illustrated in Figure 13.49
A fraction obtained from a high-resolution SEC separation (rectangular box in Fig 13.49) will contain molecules with the same molecular size (gyration radius
R g) in solution, but with different molecular weights It is often important to know the chemical-composition distribution, rather than just the average chemical com-position Likewise the functionality-type distribution (FTD) may be more important than the average number of functional groups per molecule This will be especially true if the chemical composition or the number of functional groups per molecule is known (or suspected) to vary An example is reactive (pre-)polymers that are used in many formulations for sealants, adhesives, and coatings Molecules without reactive (functional) groups will not react, molecules with one functional group will locally terminate the polymerization process, molecules with two functional groups will
0.025
0.020
0.015
0.010
0.005
0.000
R g
Molecular weight (x10−3)
homopolymer A
homopolymer B
co-polymers of A and B
fraction
Figure13.49 Schematic illustration of the relationship between molecular size and molecu-lar weight for (co-)polymers of different composition Lines represent (from top to bottom) homopolymer A, copolymer AB (75:25), AB (50:50), AB (25:75), and homopolymer B
Trang 2sustain the polymerization, and molecules with more than two functional groups promote the formation of resinous polymeric networks Knowledge of only the average number of functional groups per molecule would be insufficient in this case
13.10.4 Polymer Separations by Two-Dimensional Chromatography
In comprehensive two-dimensional liquid chromatography (LC× LC; Sections 9.3.10, 13.4.5), the entire sample is subjected to two different successive separations, while the separation obtained in the first dimension is preserved To simultaneously determine two mutually dependent distributions, such as the combination of MWD and CCD (MWD× CCD), a technique that separates according to molecular weight (e.g., SEC) must be combined with one that separates (largely) according to com-position, such as i-LC Combination of the two separations (i-LC× SEC) then yields a two-dimensional chromatogram that represents an analysis of the sample according to both molecular weight and chemical composition; an example is shown
in Figure 13.48 Corresponding one-dimensional separations are shown for SEC
at the side, and for i-LC at the top of Figure 13.48 While neither of the latter one-dimensional separations provides an adequate separation of the total sample, the corresponding two-dimensional separation does Another i-LC× SEC separa-tion is shown in Figure 13.50, for a more complex sample: chain-end-funcsepara-tionalized poly(methyl methacrylates) The horizontal time-axis for the i-LC separation is indicative of the chemical composition of the copolymer (note labels at top of figure for the number of functional groups in the molecule); while the vertical time-axis for the SEC separation is related to its molecular weight
Two-dimensional chromatograms such as those in Figures 13.48 and 13.50 can provide a useful qualitative picture of the composition of a copolymer Different samples can be compared in great detail, and the results of such a comparison
groups per molecule
1.2
1.1
1.0
0.9
0.8
0.7
i -LC (hr)
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Figure13.50 Two-dimensional separation of chain-end-functionalized poly(methyl
methacrylates) The dashed lines indicate areas in the 2D-chromatogram that correspond
to molecules with zero, one or two functional groups, as indicated at the top of the figure Adapted from [172]
Trang 3658 BIOCHEMICAL AND SYNTHETIC POLYMER SEPARATIONS
can be used to better understand the properties of polymeric materials or related polymerization processes [173] Unfortunately, it is much more difficult to obtain
quantitative information from such figures, as a number of complications arise First,
the relationship between SEC retention time and molecular weight depends also on
polymer chemical composition and topology (e.g., degree of branching) Second,
detector response also depends on these polymer properties
To solve the first problem (retention not completely defined by molecular weight), we must know retention in SEC as a function of solute molecular weight
and chemical composition; this can be accomplished by the use of appropriate
copolymer standards The second problem (varying response factor) is more of
a challenge When homopolymers are studied, the response factor may be nearly constant (i.e., independent of molecular weight) for UV detection However, many polymers lack chromophors, which necessitates the use of refractive-index (RI) detection Here the response factor (usually referred to as the refractive-index
increment or dn/dc) tends to be nonconstant in the oligomeric region.
REFERENCES
1 G T Hermanson, Bioconjugate Techniques, Academic Press, San Diego, CA, 1996.
2 L R Snyder and M A Stadalius, High-Performance Liquid Chromatography:
Advances and Perspectives, Vol 4, C Horv ´ath, ed Academic Press, San Diego,
1986, p 195
3 L R Snyder and J W Dolan, High-Performance Gradient Elution, Wiley-Interscience,
Hoboken, NJ, 2007
4 J O Konz, R C Livingood, A J Bett, A R Goerke, M E Laska, and S L Sagar,
Hum Gene Ther., 16 (2005) 1346.
5 E I Trilisky and A M Lenhoff, J.Chromatogr., 1142 (2007) 2.
6 M A Stadalius, B F D Ghrist, and L R Snyder, J Chromatogr., 387 (1987) 21.
7 J S Richardson, Adv Protein Chem., 34 (1981) 167.
8 W R Melick-Adayan, V V Barynin, A A Vagin, V V Borisov, B K Vainshtein, B
K Fita, M R N Murthy, and M G Rossman, J Mol Biol., 188 (1986) 63.
9 R L Cunico, K M Gooding, and T Wehr, Basic HPLC and CE of Biomolecules, Bay
Bioanalytical Laboratory, Richmond, CA, 1998
10 M T W Hearn and B Grego, J Chromatogr., 282, (1983) 541.
11 W Doerfler, in Medical Microbiology, 4th ed., S Baron (ed.), Univ TX Medical
Branch, Galveston, 1996
12 N B Afeyan, N F Gordon, I Mazsaroff, L Varady, S P Fulton, Y B Yang, and F
E Regnier, J Chromatogr., 519, (1990) 1.
13 F B Rudolph, D P Wiesenborn, J Greenhut, and M L Harrison, in HPLC of
Biological Macromolecules, K M Gooding and F E Regnier, eds., Dekker, New
York, 1990, p 333
14 F E Regnier, Science, 238 (1987).
15 M A Stadalius, H S Gold, and L R Snyder, J Chromatogr., 296 (1984) 31.
16 M Kawakatsu, H Kotaniguchi, H Freiser, and K M Gooding, J Liq Chromatogr.,
18 (1995) 633
17 A Apfel, S Fischer, G Goldberg, P C Goodley, and F E Kuhlmann, J Chromatogr.
A, 712 (1995) 177.
Trang 418 D V McCalley, LCGC, 23 (2005) 162.
19 D V McCalley, J Chromatogr A, 1075 (2005) 57.
20 D Guo, C T Mant, and R S Hodges, J Chromatogr., 386 (1987) 205.
21 M T W Hearn, in HPLC of Biological Macromolecules, 2nd ed., K M Gooding and
F E Regnier, eds., Dekker, New York, 2002, pp 195–312
22 J E Rivier, J Liq Chromatogr., 1 (1978) 343.
23 D Guo, C T Mant, A K Taneja, J M R Parker, and R S Hodges, J Chromatogr.,
359 (1986) 499
24 W Hancock, R C Chloupek, J J Kirkland, and L R Snyder, J Chromatogr A, 686
(1994) 31
25 S Terabe, S Nishi, and T Ando, J Chromatogr., 212 (1981) 295.
26 J L Glajch, M A Quarry, J F Vasta, and L R Snyder, Anal Chem., 58 (1986) 280.
27 C T Wehr and L Correia, LC at Work, LC-121, Varian, Walnut Creek, CA 1980.
28 D Guo, C T Mant, A K Taneja, and R S Hodges, J Chromatogr., 359 (1986) 519.
29 C T Mant, T W L Burke, J A Black, and R S Hodges, J Chromatogr., 458 (1988)
193
30 M T W Hearn and B Grego, J Chromatogr., 296 (1984) 61.
31 W R Melander, J Jacobson, and C Horv ´ath, J Chromatogr., 234 (1982) 269.
32 S Cohen, K Benedek, Y Tapuhi, J C Ford, and B L Karger, Anal Biochem., 144
(1985) 275
33 W G Burton, K D Nugent, T K Slattery, B F Johnson, and L R Snyder,
J.Chromatogr., 443 (1988) 363.
34 K D Nugent, W G Burton, T K Slattery, B F Johnson, and L R Snyder,
J.Chromatogr., 443 (1988) 381.
35 L J Licklider, C C Thoreen, J Peng, and S P Gygi, Anal Chem., 74 (2002) 3076.
36 B F D Ghrist and L R Snyder, J Chromatogr., 459 (1989) 43.
37 P Gagnon, Purification Tools for Monoclonal Antibodies, Validated Biosystems,
Tuscon, AZ, 1996
38 W Kopaciewicz, M A Rounds, J Fausnaugh, and F E Regnier, J Chromatogr., 266
(1983) 3
39 C D Scott in Modern Practice of Liquid Chromatography, J J Kirkland, ed.,
Wiley-Interscience, New York, 1971
40 W Muller, J Chromatogr., 510 (1990) 133.
41 M T Ueda and Y Ishida, J Chromatogr., 386 (1987) 273.
42 R Chicz and F Regnier, Met Enzymol., 182 (1990) 392.
43 L R Snyder, J J Kirkland, and J L Glajch, Practical HPLC Method Development,
2nd ed., Wiley-Interscience, New York, 1997, p 515
44 L Sluyterman and O Elermsa, J Chromatogr., 150 (1978) 17.
45 L Sluyterman and J Wijdenes, J Chromatogr., 150 (1978) 31.
46 L Sluyterman and J Wijdenes, J Chromatogr., 206 (1981) 429.
47 L Sluyterman and J Wijdenes, J Chromatogr., 206 (1981) 441.
48 Chromatofocusing with Polybuffer and PBE Handbook, ed AB, Publication
18-1009-07, Amersham Pharmacia Biotech, Uppsala, Sweden
49 P Gagnon, Quarterly Resource Guide to Downstream Processing, Validated
Biosys-tems, Tuscon, AZ, 1999
Trang 5660 BIOCHEMICAL AND SYNTHETIC POLYMER SEPARATIONS
50 N G Good, G D Winget, W Winter, T N Connally, S Izawa, and R M M Singh,
Biochemistry, 5 (1966) 467.
51 T Kawasaki and S Takahashi, Eur J Biochem., 152 (1985) 361.
52 T Kawasaki, J Chromatogr., 151 (1978) 95.
53 T Kawasaki, J Chromatogr., 157 (1978) 7.
54 M J Gorbunoff, Anal Biochem., 136 (1984) 425.
55 K M Gooding, Z El Rassi, and C Horv ´ath, in HPLC of Biologicial Macromolecules,
2nd ed., K M Gooding and F E Regnier, eds., Dekker, New York, 2002, pp 247–280
56 L Kagedal, in Protein Purification, J C Janson and L Ryden, eds., VCH, New York,
1989, pp 227–251
57 F H Arnold, Biotechnology, 151 (1991) 9.
58 J Porath and B Olin, Biochemistry, 22 (1983) 162.
59 E Hochuli, W Bannwarth, H Dobeli, R Gentz, and D Stuber, Biotechnology, 6
(1988) 1321
60 B Bodenmiller, L N Mueller, M Mueller, B Domon, and R Aebersold, Nature
Methods, 4 (2007) 231.
61 J Porath, J Chromatogr., 443 (1988) 3.
62 Z El Rassi and C Horv ´ath, J Chromatogr., 359 (1986) 241.
63 A Tiselius, Ark Kem Min Geol., 26B (1948).
64 J Porath, Biochem Biophys Acta, 39 (1960) 193.
65 B Gelotte, J Chromatogr., 3 (1960) 330.
66 Y Kato, T Kitamura, and T Hashimoto, J Chromatogr., 266 (1983) 49.
67 Y Kato, T Kitamura, and T Hashimoto, J Chromatogr., 292 (1984) 418.
68 R E Shansky, S.-L Wu, A Figueroa, and B L Karger, in HPLC of Biological
Macromolecules, K M Gooding and F E Regnier, eds., Dekker, New York, 1990, p.
95
69 H S Frank and M J Evans, J Chem Phys., 13 (1945) 507.
70 S Shaltiel, Z Er-el, Proc Natl Acad Sci USA, 52 (1973) 430.
71 D L Gooding, M N Schmuck, M P Nowlan, and K M Gooding, J Chromatogr.,
359 (1986) 331
72 J L Fausnaugh and F E Regnier, J Chromatogr., 359 (1986) 131.
73 D B Wetlaufer and M R Koenigbauer, J Chromatogr., 359 (1986) 55.
74 S L Wu, K Benedek, and B L Karger, J Chromatogr., 359 (1986) 3.
75 A J Alpert, J Chromatogr., 499 (1990) 177.
76 M Lafosse, B Herbreteau, M Dreux, and L Morinallorym, J Chromatogr., 472
(1989) 209
77 W Naidong, J Chromatogr B, 796 (2003) 209.
78 B A Olsen, J Chromatogr A, 913 (2001) 113.
79 T Yoshida, Anal Chem., 68 (1997) 3038.
80 H Tanaka, X Zhou, and O Masayoshi, J Chromatogr A, 987 (2003) 119.
81 T K Chambers and J S Fritz, J Chromatogr A, 797 (1998) 139.
82 M Wuhrer, C A M Koeleman, A M Deelder, and C N Hokke, Anal Chem., 76
(2004) 833
83 M Wuhrer, C A M Koeleman, C H Hokke, and A M Deelder, Anal Chem., 77
(2005) 886
Trang 684 A J Ytterberg, R R Ogorzalek-Loo, P Boontheung, J Wohlschlegel, and J A Loo, abstract WP 523, 55th ASMS Conference on Mass Spectrometry and Allied Topics, Indianapolis, 2007
85 C T Mant, J R Litowski, and R S Hodges, J Chromatogr A, 816 (1998) 65.
86 C A Mizzen, A J Alpert, L Levesque T P A Kruck, and D R McLachlan, J.
Chromatogr B, 744 (2000) 33.
87 A Jungbauer, C Machold, and R Hahn, J Chromatogr A, 1079 (2005) 221.
88 H Lindner, B Sarg, C Meraner, and W Helliger, J Chromatogr A, 743 (1996) 137.
89 H Lindner, B Sarg, C Meraner, and W Helliger, J Chromatogr A, 782 (1997) 55.
90 B Sarg, W Helliger, H Talasz, E Kooutzamani, and H Lindner, J Biol Chem., 279
(2004) 53–58
91 A J Alpert, Anal Chem., 80 (2008) 62.
92 A J Alpert, G Mitulovic, and M Mechtler, poster P2412-W, 32nd Annual Symposium
on High Performance Liquid Phase Separations and Related Techniques, Baltimore, 2008
93 U Lewandrowski, K Lohrig, R P Zahedi, D Wolters, and A Sickmann, Clin.
Proteom., 4 (2008) 25.
94 P H O’Farrell, J Biol Chem., 250 (1975) 4007.
95 M Gilar, P Olivova, A E Daly, and J C Gebler, Anal Chem., 77 (2005) 6426.
96 S P Gygi, B Rist, S A Gerber, F Turecek, M H Gelb, and R Aebersold, Nat.
Biotechnol., 17 (1999) 994.
97 A J Link, J Eng, D M Schieltz, E Carmac, G J Mize, D R Morris, B M Garvik,
and J R Yates, Nat Biotechnol., 17 (1999) 676.
98 D A Wolter, M P Washburn, and J R Yates, Anal Chem., 73 (2001) 5683.
99 M P Washburn, D Wolters, and J R Yates, Nat Biotechnol., 19 (2001) 5683.
100 M T Davis, J Beierle, E T Bures, M D McGinley, J Mort, J H Robinson, C S
Spahr, W Yu, R Luethy, and S D Patterson, J Chromatogr B, 752 (2001) 281.
101 G J Opiteck and J W Jorgenson, Anal Chem., 69 (1997) 2283.
102 G J Opiteck, S M Ramirez, J W Jorgenson, and M A Moseley Anal Biochem.,
258 (1998) 349
103 K Wagner, T Miliotis, G Marko-Varga, R Bischoff, and K K Unger, Anal.Chem.,
74 (2002) 809
104 R Bischoff and L W McLaughlin, in HPLC of Biologicial Macromolecules, K M.
Gooding and F E Regnier, eds., Dekker, New York, 1990, pp 641–667
105 R Hecker, M Colpan, and D Riesner, J Chromatogr., 326 (1985) 251.
106 S Nakatani, T Tsuda, Y Yamasaki, M Moriyama, H Watanabe, and Y Kato,
Technical Report 78, TosoHaas, Tokyo, 1995.
107 R R Drager and F E Regnier, Anal Biochem., 145 (1985) 47.
108 G Zon, in Characterization of Proteins: New Methods in Peptide Mapping, W S.
Hancock, ed., CRC Press, Boca Raton, 1995, p 301
109 W Xiao and P J Oefner, Human Mutation, 17 (2001) 439.
110 A Premstaller and P J Oefner, in Methods in Molecular Biology, 211, P.-Y Kwok,
ed., Humana Press, Totowa, NJ, 2002, p 15
111 R L Pearson, J F Weiss, and A D Kelmers, Biochim Biophys Acta, 228 (1971)
770
112 R Bischoff and L W McLaughlin, Anal Biochem., 151 (1985) 526.
113 J D Pearson, M Mitchell, and F E Regnier, J Liq Chromatogr., 6 (1983) 1441.
Trang 7662 BIOCHEMICAL AND SYNTHETIC POLYMER SEPARATIONS
114 R Bischoff and L W McLaughlin, J Chromatogr., 296 (1984) 329.
115 Z el Rassi and C Horv ´ath, J Chromatogr., 326 (1985) 79.
116 Z el Rassi and C Horv ´ath, Chromatographia, 19 (1984) 9.
117 S C Churms, CRC Handbook of Chromatography: Carbohydrates, Vol 2, CRC Press,
Boca Raton, 1991
118 S C Churms, J Chromatogr A, 720 (1996) 75.
119 K Koizumi, T Utamura, Y Kubota, and S Hizukuri, J Chromatogr., 409 (1987) 396.
120 C Brons and C Olieman, J Chromatogr., 159 (1983) 79.
121 D W Armstrong and H L Jin, J Chromatogr., 462 (1989) 219.
122 S Honda and S Suzuki, Anal Biochem., 142 (1984).
123 A S Feste and I Khan, J Chromtogr., 607 (1992) 7.
124 Guide to Aminex® HPLC Columns, Bulletin 1928, Bio-Rad Laboratories.
125 T Jupille, Amer Lab., 13 (1981) 80.
126 R W Goulding, J Chromatogr., 103 (1975) 229.
127 Analysis of Carbohydrates by High Performance Anion Exchange Chromatography
with Pulsed Amperometric Detection (HPAE-PAD), Dionex Technical Note 20 (2000).
128 Glycoprotein Oligosaccharide Analysis Using High-Performance Anion-Exchange
Chromatography, Dionex Technical Note 42 (1997).
129 Optimal Settings for Pulsed Amperometric Detection of Carbohydrates Using the
Dionex ED40 Electrochemical Detector, Dionex Technical Note 21 (1998).
130 B G Huyghe, X Liu, S Sutjipto, B J Sugarman, M T Horn, H M Shepard, C J
Scandella, and P Shabram, Hum Gene Ther., 6 (1995) 1403.
131 W W Yau, J J Kirkland, and D D Bly, Modern Size-Exclusion Liquid
Chromatog-raphy, Wiley-Interscience, New York, 1979.
132 J Porath and P Flodin, Nature (London), 183, (1959) 1657.
133 S Hjerten and R Mosbach, Anal Biochem., 3, (1962) 109.
134 S Hjerten, Arch Biochem Biophys., 99, (1962) 466.
135 E L Johnson and R L Stevenson, in Basic Liquid Chromatography, Varian, Walnut
Creek, CA, 1978, p 150
136 L Hagel and J C Janson, in Chromatography, 5th ed., E Heftmann, ed., Elsevier,
Amsterdam, 1992, A267
137 K M Gooding and F E Regnier, in HPLC of Biological Macromolecules, 2nd ed., K.
M Gooding and F E Regnier, eds., Dekker, New York, 2002, p 59
138 B F D Ghrist, M A Stadalius, and L R Snyder, J Chromatogr., 387 (1987) 1.
139 R L Cunico, K M Gooding, and T Wehr, in Basic HPLC and CE of Biomolecules,
Bay Bioanalytical Laboratory, Richmond, CA, 1999, p 135
140 E Pfannkoch, K C Lu, F E Regnier, and H G Barth, J Chromatogr Sci., 18, (1980)
430
141 E Folta-Stogniew and K R Williams, J Biomol Techniques, 10 (1999) 51.
142 V N Uversky, Biochem., 32 (1993) 13288.
143 L Hagel, J Chromatogr., 648, (1993) 19.
144 B Sebille and N Thuaud, In Handbook of HPLC for the Separation of Amino Acids,
Peptides, and Proteins, Vol 2, W S Hancock, ed., CRC Press, Boca Raton, 1984, pp.
379–391
145 J P Hummel and W J Dreyer, Biochim Biophys Acta, 63 (1962) 530.
146 J Curling., Biopharm International, (Feb 2007) 10.
Trang 8147 G Walsh., Appl Microbiol Biotechnol., 67 (2005) 151.
148 L Hagel, G Jagschies, and G K Sofer, Handbook of Process Chromatography:
Devel-opment, Manufacturing, Validation and Economics, 2nd ed., Elsevier, Amsterdam,
2007
149 H Chase, Trends Biotechnol., 12 (1994) 296.
150 A Jungbauer and E Boschetti., J Chromatogr B, 662 (1994) 143.
151 A Jungbauer, J Chromatogr A, 1065 (2005) 3.
152 P Lu, C D Carr, P Chadwick, M Li, and K Harrison, BioPharm., (Sep 2001) 19.
153 J Rivier and R McClintock, J Chromatogr., 268 (1983) 112.
154 J Rivier, R McClintock, R Galyean, and H Anderson J Chromatogr., 288 (1983)
303
155 E I Grimm and E E Logsdon, US Patent 4,612,367 (1986)
156 P H Lai and T W Strickland, US Patent 4,667,016 (1987)
157 R Bischoff, D Clesse, O Whitechurch, P Lepage, and C Roitsch, J Chromatogr A,
476 (1989) 245
158 D I Urdal, D Mochizuki, P J Conlon, C J March, M L Remerowski, J Eisenman,
C Ramthun, and S Gillis, J Chromatogr A, 296 (1984) 171.
159 S Hershenson, Z Shaked, and J Thomson, US Patent 4,961,969 (1990)
160 C V Olsen, D H Reifsnyder, E Canova-Davis, V T Ling, and S E Builder, J.
Chromatogr A 675 (1994) 101.
161 V Price, D Mochizuki, C J March, D Cosman, M C Deeley, R Klinke, W
Clevenger, S Gillis, P Baker, and D Urdal, Gene, 55 (1987) 28.
162 E P Kroeff, R A Owens, E L Campbell, R D Johnson, and H I Marks, J.
Chromatogr., 461 (1989) 45.
163 J Brange, The Physico-chemical and Pharmaceutical Aspects of Insulin, Springer,
Berlin, 1987
164 E P Kroeff and R E Chance, Proceedings of the FDA-USP Workshop on Drug and
Reference Standards for Insulins, Somatotrophins and Thyroid-Axis Hormones, United
States Pharmacopeia Convention, Rockville, MD, 1982, pp 148–162
165 Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or
Holding Of Drugs, 21 CFR Part 210, http://www.fda.gov/cder/dmpq/cgmpregs.htm.
166 Current Good Manufacturing Practice for Finished Pharmaceuticals, 21 CFR Part 211,
http://www.fda.gov/cder/dmpq/cgmpregs.htm
167 International Organization for Standardization, http://www.iso.org/iso/home.htm
168 M T W Hearn, Reversed-Phase High Performance Liquid Chromatography,
Aca-demic Press, New York, 1984
169 A M Striegel, W W Yau, J J Kirkland, and D D Bly, Modern Size-Exclusion Liquid
Chromatography, 2nd ed., Wiley-Interscience, New York, 2009.
170 T H Mourey, Int J Polym Anal Charact., 9 (2004) 97.
171 A M Striegel, Anal Chem., 77 (2005) 104A.
172 W F Reed, in Multiple Detection in Size-Exclusion Chromatography, A M Striegel,
ed., ACS, New York, 2005, ch 2
173 W M C Decrop et al., submitted for publication
174 X Jiang, P J Schoenmakers, X Lou, V Lima, J L J van Dongen, and J Brokken-Zijp,
J Chromatogr., 1055 (2004) 123.
175 X Jiang, A van der Horst, V Lima, and P J Schoenmakers, J Chromatogr, 1076
(2005) 51
Trang 10CHAPTER FOURTEEN
ENANTIOMER
SEPARATIONS
with Michael L ¨ammerhofer, Norbert M.Maier, and Wolfgang Lindner
14.1 INTRODUCTION, 666
14.2 BACKGROUND AND DEFINITIONS, 666
14.2.1 Isomerism and Chirality, 667
14.2.2 Chiral Recognition and Enantiomer Separation, 669
14.3 INDIRECT METHOD, 670
14.4 DIRECT METHOD, 675
14.4.1 Chiral Mobile-Phase-Additive Mode (CMPA), 675
14.4.2 Chiral Stationary-Phase Mode (CSP), 677
14.4.3 Principles of Chiral Recognition, 679
14.5 PEAK DISPERSION AND TAILING, 681
14.6 CHIRAL STATIONARY PHASES
AND THEIR CHARACTERISTICS, 681
14.6.1 Polysaccharide-Based CSPs, 682
14.6.2 Synthetic-Polymer CSPs, 689
14.6.3 Protein Phases, 691
14.6.4 Cyclodextrin-Based CSPs, 697
14.6.5 Macrocyclic Antibiotic CSPs, 699
14.6.6 Chiral Crown-Ether CSPs, 706
14.6.7 Donor-Acceptor Phases, 707
14.6.8 Chiral Ion-Exchangers, 711
14.6.9 Chiral Ligand-Exchange CSPs (CLEC), 713
14.7 THERMODYNAMIC CONSIDERATIONS, 715
14.7.1 Thermodynamics of Solute-Selector Association, 715
Introduction to Modern Liquid Chromatography, Third Edition, by Lloyd R Snyder,
Joseph J Kirkland, and John W Dolan
Copyright © 2010 John Wiley & Sons, Inc.
665