€ Values taken from op - amp specification sheets www.jaegerblalock.com or www.analog.com Page 631 € Values taken from op - amp specification sheets www.jaegerblalock.com or www.analog
Trang 1Microelectronic Circuit Design
Third Edition - Part III Solutions to Exercises
CHAPTER 10
Page 509
I o
I i =
1.58 A 0.167µA = 9.48x10
€
i
( ) The constant slope region spanning a maximum input range is between 0.4 ≤ vI ≤ 0.65,
and the bias voltage V I should be centered in this range : V I =0.4 + 0.65
2 V = 0.525 V.
v i ≤ 0.65 − 0.525 = 0.125 V and vi ≤ 0.525 − 0.40 = 0.125 V For vI = 0.8V, the slope is 0 Av = 0.
(ii) v O = V O + v o For v i = 0, v I = V I = 0.6, V O = 14V and A v = +40 V o = A v V i = 40 0.01V( )= 4V
v O= 14.0 + 4.00sin1000( πt) volts V O = 14 V
Trang 3
A v(j0.95) = 20
12+( )0.12 0.952
Trang 5CHAPTER 11
Page 545
R1+ R2 ≥ 100kΩ 501R1≥ 100kΩ → R1≥ 200 Ω There are many possibilities
(R1= 200 Ω, R2= 100 kΩ), but ( R1= 220 Ω, R2= 110 kΩ) is a better solution since
resistor tolerances could cause i O to exceed 0.1 mA in the first case
Page 554
Trang 6
R3 =
−6V 3kΩ = −2mA i O= −2sin1000( πt − 2sin2000πt) mA
Page 559
V+= V2 R4
R3+ R4 = 5
100kΩ 10kΩ +100kΩ = 4.545V I O =20.0 − 4.545
36kΩ = −92.1 µA
Page 560
Trang 7
€
v O = −RC dv S
dt = − 20kΩ( ) (0.02µF) (2.50V) (2000π) (cos2000πt)= −6.28cos2000πt V
ii
( ) A v = A vA A vB A vC = −25.2( )3= −16,000 R in = R inA = 2.7 kΩ R out = R outC = 0
Page 570
Trang 8dC1 =
C1Q
dQ
dR2 R1= R2→ Q =
12
C1
C2 → S R2
Q
= 0 Page 577
R th = 2kΩ 2kΩ = 1kΩ f o= 1
2π 1kΩ 82kΩ( ) (0.02µF) (0.02µF) = 879 Hz Q =
12
82kΩ 1kΩ = 4.53
Trang 10( ) (0.02µF)
0.02µF + 0.02µF = 4.53The values of the resistors are unchanged C1= C2 =0.02µF
4 = 0.005 µF
2π 1kΩ( ) (82kΩ) (0.005µF) (0.005µF) = 3520 Hz Q =
82kΩ 1kΩ
0.005µF
( ) (0.005µF)
0.005µF + 0.005µF = 4.53
Page 585
€
The diode will conduct and pull the output up to v O = v S = 1.0 V v1= v O + v D = 1.0 + 0.6 = 1.6 V For a negative input, there is no path for current through R, so v O = 0 V The op - amp
sees a -1V input so the output will limit at the negative power supply : v O = −10 V.
The diode has a 10 - V reverse bias across it, so V Z > 10 V.
Page 587
Trang 12CHAPTER 12
Page 612
( ) Values taken from OP - 27 specification sheet (www.jaegerblalock.com or www.analog.com)
(iii) Values taken from OP - 27 specification sheet
Page 613
€
Values taken from OP - 77 specification sheet (www.jaegerblalock.com or www.analog.com)
Page 616
( ) (0.1Ω)= 20,000
Page 617
Trang 13( ) (0.1Ω) = 200,000 A dB = 20 log 2x10
5
( )= 106 dB
Page 619
€
Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)
Page 620
€
Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)
Page 626
Trang 14
€
Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)
Page 631
€
Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)
Page 634
€
Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)
Page 637
Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)
Trang 15
A few possibilities : 27 kΩ and 3 kΩ, 270 kΩ and 30 kΩ, 180 kΩ and 20 kΩ, etc.
Page 640
s +105π
s + 316π
f H ≅βf T = 5MHz
1+10
50 20
Trang 16
€
A v( )0 = 50 25( )= 1250 A v( )ωH =1250
2 = 8841+ ωH
Trang 17CHAPTER 13
Page 671
= 2.7V with v GS − V TN = 4 −1 = 3V , so the transistor has entered the triode region.
(d) Choose two points on the i - v characteristics For example,
V CE = 12 − 4300I C −1500I E = 12 − 4300 1.45mA( )−1500 101
R B = 20kΩ 62kΩ = 15.1 kΩ R L = 8.2kΩ 100kΩ = 7.58 kΩ
Trang 18
€
A vt = −g m R L = −9.80mS 18kΩ( )= −176
Trang 20
( ) The slope of the output characteristics is zero, so λ = 0 and r o = ∞
For the positive change in vgs, g m= Δi D
Δv GS
≅
2.1V 3.3kΩ 0.5V = 1.3 mS
Trang 21
€
V DS ≥ V GS − V TH = 1.981V −1V = 0.981 V
Page 717
Trang 22
€
a
( ) V M ≤ min I[ C R C , V( CE − V BE) ]= min 239µA 10kΩ[ ( ), 3.67 − 0.7( )V]= 2.39 V
Limited by the voltage drop across R C
b
( ) V M ≤ min I[ D R D , V( DS − V DSSAT) ]= min 250µA 30kΩ[ ( ), 4.50 −1( )V]= 3.50 V
Limited by the value of V DS
Trang 23
CHAPTER 14
Page 754
Trang 24FET : v i ≤ 0.2 V( GS − V TN) (1+ g m R I)R I + R6
R6 = 0.2 0.982( ) [1+ 0.491mS 2kΩ( ) ]2kΩ +12kΩ 12kΩ = 454 mV Neglecting R6, v i ≤ 0.2 V( GS − V TN) (1+ g m R I)= 0.2 0.982( ) [1+ 0.491mS 2kΩ( ) ]= 389 mV
Trang 25Page 786
Trang 28= A 3000Ω69.1Ω + 3000Ω= 0.959
Page 805
i
( ) Reverse the direction of the arrow on the ermitter of the transistor as well
as the values of VEE and VCC
Trang 29= V CCmin − I CmaxR Cmax
= 5V 0.95( )− 368µA 8.2kΩ( ) (1.05)= 1.58 V 1.58 ≥ 0, so active region is ok 10% tolerances I Cmax
= V CCmin − I CmaxR Cmax
= 5V 0.90( )− 410µA 8.2kΩ( ) ( )1.1 = 0.802 V 0.802 ≥ 0, so active region is ok.
= 49.9 Page 811
= −50.0
Trang 30
( ) R out = 3300 1
0.0796S +
399090.1
Trang 31CHAPTER 15
Page 842
Trang 32
V CE1= 15 − 74.3µA 10kΩ( )− −0.7( )= 15.0 V V CE 2 = 15 − 74.3µA − 7.5µA( ) (10kΩ)− −0.7( )= 15.0 V
V EB 3= 74.3µA − 7.5µA( ) (10kΩ)= 0.668 V I S 3= 750µA
exp 0.668V0.025
500µA 50µA
5mA 50µA
Trang 33R in = 2rπ = 2 50
40 50( µA)= 50 kΩ R out ≅
90V 5mA = 18.0 kΩ
Page 871
Trang 35( ) Since the device parameters are the same, V BE1 = V EB 2=0.5mA 2.4kΩ( )
Trang 37= 0.490 MR = 0.5
1+15601+ 0.7
60 +
1.575
= 0.606
MR = 5 A
2 A = 2.50 MR =
2.501+ 3.575
= 2.39 MR = 2.5
1+15601+ 0.7
60 +
3.575
= 2.95
Trang 38= 7.46 µA IO3= 5 7.46µA( )= 37.3 µA IO4 = 10 7.46µA( )= 74.6 µA
I O2= 10µA 1+
10501+0.7
50 +
1750
= 8.86 µA IO 3= 50µA
1+10501+0.7
50 +
1750
= 44.3 µA
I O4 = 100µA
1+10501+ 0.7
50 +
1750
= 10.1 µA R out 2=50V + 10V
10.1µA = 5.94 MΩ
Trang 3950V + 10V 529µA = 113 kΩ
Page 906
50V + 10V 117µA = 513 kΩ
Page 907
R out ≅βo r o
2 =
1502
50V + 15V 50µA
Trang 4067V + 14.3V 50µA
( ) V DS 4 ≥ V GS 4 − V TN = 0.2 V V D 4 ≥ V S 4 + 0.2 V D4 ≥ 0.95 + 0.2 = 1.15 V
iii
( ) I O = 50µA ± 0.1% ΔI O ≤ 50nA R out ≥ 20V
50nA = 400 MΩ Choose R out = 1 GΩ.
Page 917
( ) Since the transistors have the same parameters, V GS1=V DD − −V( SS)
Trang 41A v = G m R o = 78.5
Page 928
Trang 421+ 0.7V
60V +
250
= 1.08 mA I2 = 0.25 1.09mA( ) 1+
21.3V 60V
1+ 0.7V
60V +
250
733µA 18.4µA1
R = 2r 1.3r = 2 60 +13
1.3 60 +1.3
= 20.1MΩ 11.1MΩ = 7.15 MΩ
Trang 44CHAPTER 16
Page 988
2π 100
2+ 10002− 2 500( )2− 2 0( )2 = 114 Hz
Page 989
ω2+ 1002 →ω ≥ 205 rad/s
Trang 47g m
2πCµ =
0.064S 2π 1pF( )= 10.2 GHz
A mid= −135 is not affected by the value of fT
Trang 50
2π R L(Cµ+ C L)=
12π 4120Ω( ) (0.5 + 5)pF = 7.02 MHz
Page 1043
Trang 52CHAPTER 17
Page 1078
1041+104(0.0990) = 10.1
R in = R id(1+ Aβ)= 25kΩ 1+ 10[ 4(0.0990) ]= 24.8 MΩ R out = R o
1+ Aβ =
1031+104(0.0990)= 1.01 Ω
ii
( ) A = 4730 1kΩ + 25kΩ + 9.01kΩ
25kΩ + 9.01kΩ = 4870 A v =
48701+ 4870 0.0990( ) = 10.1
R in = R id(1+ Aβ)= 34.0kΩ 1+ 4870 0.0990[ ( ) ]= 16.4 MΩ R out = R o
1+ Aβ =
662Ω1+ 4870 0.0990( ) = 1.37 Ω
Page 1086
Trang 53
€
R E is now connected between the emitter and collector of Q2 in the upper half of
Fig 17.36 However, when the A - circuit is constructed, y22F is connected in parallel
with R E, so the resistance at the output of the A - circuit is still 901 Ω The value of
y11F is unchanged, so overall the A - circuit is unchanged Likewise, β is unchanged,
and so A tr is the same
Page 1102
Trang 54R out = 2r o3
1+µf
21+ 0 ≅µf r o3 Page 1116
From the Bode plot, the phase shift at the unity gain frequency (10 MHz) is -130o
The phase margin is 180 o - 130 o = 50o
Trang 56
s = 15.4
V
µs ii
= 3.00 V
Page 1149