CHAPTER 1 1.1 Answering machine Alarm clock Automatic door Automatic lights ATM Automobile: Engine controller Temperature control ABS Electronic dash Navigation system A
Trang 1CHAPTER 1
1.1
Answering machine
Alarm clock
Automatic door
Automatic lights
ATM
Automobile:
Engine controller
Temperature control
ABS
Electronic dash
Navigation system
Automotive tune-up equipment
Baggage scanner
Bar code scanner
NiCad/Lithium Ion battery chargers
Cable/DSL Modems and routers
Calculator
Camcorder
Carbon monoxide detector
Cash register
CD and DVD players
Ceiling fan (remote)
Cellular phones
Coffee maker
Compass
Copy machine
Cordless phone
Depth finder
Digital Camera
Digital watch
Digital voice recorder
Digital scale
Digital thermometer
Electronic dart board
Electric guitar
Electronic door bell
Electronic gas pump
Elevator
Exercise machine
Fax machine
Fish finder
Garage door opener
GPS
Hearing aid
Invisible dog fences
Laser pointer
LCD projector
Light dimmer
Keyboard synthesizer
Microwave oven Model airplanes MP3 player Musical greeting cards Musical tuner Pagers Personal computer Personal planner/organizer (PDA) Radar detector
Broadcast Radio (AM/FM/Shortwave) Razor
Satellite radio receiver Security systems Sewing machine Smoke detector Sprinkler system Stereo system Amplifier
Receiver
Stud sensor Talking toys Telephone Telescope controller Thermostats Toy robots Traffic light controller
TV receiver & remote control Variable speed appliances Blender Drill Mixer Food processor Fan
Vending machines Video game controllers Wireless headphones & speakers Wireless thermometer
Workstations Electromechanical Appliances*
Air conditioning and heating systems Clothes washer and dryer
Electrical timer
Iron, vacuum cleaner, toaster Oven, refrigerator, stove, etc
*These appliances are historically based only upon on-off
Trang 21.2
N =1327x10(2020−1970)/6.52= 61.9 x 109 transistors/chip
1.3
N = 2.233x10( 9)x10(2021−2014)/10.1=11.0 x 109 Transistors/Chip
1.4
B =19.97 x 100.1997 2021−1960 ( )= 30.3 x 1012 = 30.3 Tb/chip
1.5
(a)
1.6
N2
N1 =1327x10
Y2−1970
( ) /6.52
1327x10(Y1−1970 ) /6.52 =10(Y2−Y1 ) /6.52
(a) Y2−Y1= 6.52log2 =1.96 years
(b) Y2−Y1= 6.52log10 = 6.52 years
1.7
N2
N1 = 2.233x10
9
( )x10(Y2 −2014 ) /10.1
2.233x109
( )x10(Y1 −2014 ) /10.1 =10(Y2−Y1 ) /10.1
(a) Y2−Y1=10.1log2 = 3.07 years
(b) Y2−Y1=10.1log10 =10.1 years
Although this distance corresponds to the diameter of only a few atoms, ITRS projections are
on track to produce feature sizes in this range See the Intel website for example
Trang 3P = 268x10( 6tubes) (1.5W tube)= 402 MW! I = 4.02 x 10 W
V = 268x10( 6tubes) (80cm3/ tube)= 21.4x109
cm3= 21400 m3
1.10 D, D, A, A, D, A, A, D, A, D, A
1.11
28
256bits=19.53mV
bit and
3.06V 19.53mV bit
=156.7 bits →157 LSB
15710 = 128+16 +8+ 4 +1( )10 =100111012
1.12
210 bits= 2.5V
1024 bits= 2.441mV
bit
01011001102= 28+ 26+ 25+ 22+ 21
( )10= 35810 V O = 358 2.5V
1024
= 0.874 V
1.13
212
4096bits = 2.441 mV VMSB=10V
2 = 5.000 V
1001001010012= 211+ 28+ 25+ 23+ 20 = 234510 V O = 2345 2.441mV( )= 5.724 V
1.14
215
bits= 0.3052mV
bit and
6.89V
15
bits
( )= 22577 bits
2257710 = 16384 + 4096 + 2048+ 32 +16 +1( )10
2257710 =1011000001100012
1.15 (a) A 4 digit readout ranges from 0000 to 2000 and has a resolution of 1 part in 2,000
The number of bits must satisfy 2B ≥ 2,000 where B is the number of bits Here B = 11 bits (b) 2B ≥ 106 yields B = 20 bits
1.16
Trang 41.17
IB = dc component = 7.50 mA, ib = signal component = 0.003 cos (1000t) A
1.18
VGS = 2.5 V, vgs = 0.5u(t-1) + 0.1 cos 2000πt Volts
1.19
vCE = [5 + 2 cos (5000t)] V
1.20
vDS = [5 + 2 sin (2500t) + 4 sin (1000t)] V
1.21
V = 1 V, R1 = 24 kΩ, R2= 30 kΩ and R3 = 11 kΩ
24k Ω+ 30kΩ 11kΩ( )= 0.749 V V2 =1V 30k Ω 11kΩ
24k Ω+ 30kΩ 11kΩ( )= 0.251 V
Checking:V1+V2 = 0.749 + 0.251=1.00 V which is correct.
24k Ω+ 30kΩ 11kΩ( )= 31.2 μA I2= I1
R3
R2+ R3
= 31.2( μA)30k 11k Ω+11kΩΩ = 8.37 μA
I3= I1
R2
R2+ R3
= 31.2( μA)30k 30k Ω+11kΩΩ = 22.8 μA Checking: I2+ I3= 31.2 μA
Trang 5V = 8 V, R1 = 30 kΩ, R2= 24 kΩ and R3 = 15 kΩ
30k Ω+ 24kΩ 15kΩ( )= 8V 30k Ω+ 9.23kΩ 30kΩ = 6.12 V
V2= 8V 24k Ω 15kΩ
30k Ω+ 24kΩ 15kΩ( )=1.88 V Checking: 6.12+1.88 = 8.00 V
I2= I1
R3
R2+ R3
30k Ω+ 9.23kΩ
24k Ω+15kΩ= 78.4 μA
I3= I1
R2
R2+ R3
30k Ω+ 9.23kΩ
24k Ω+15kΩ=125 μA
Checking: I1= 8V
30k Ω+ 9.23kΩ= 204 μA and I1=I2+ I3
1.23
I2= 200μA 150kΩ
150k Ω+150kΩ
=100 μA I3= 200μA 150kΩ
150k Ω+150kΩ
=100 μA
V3= 200μA 150k( Ω 150kΩ)68k Ω+82kΩ 82kΩ
= 8.2V Checking: I1+ I2 = 200 μA and I2R2 =100μA 82k( Ω)= 8.2 V
1.24
I1= 4mA (3.9k Ω+ 5.6kΩ)
3.9k Ω+ 5.6kΩ
( )+ 2.4kΩ = 3.19 mA I2= 4mA 2.4kΩ
9.5k Ω+ 2.4kΩ = 0.807 mA
V3= 4mA 2.4kΩ 9.5kΩ( )3.9k 5.6k Ω+ 5.6kΩΩ = 4.52 V
Checking: I1+ I2 = 4.00 mA and I2R3= 0.807mA 5.6kΩ( )= 4.52 V
Trang 61.25
Summing currents at the open circuited output node yields:
v
104 +.025v= 0 so v = 0 and vth= v i − v = v i
To find the Thévenin equivalent resistance, we apply a test source to the output with vi set to zero:
Thévenin equivalent circuit:
Summing currents at the output node:
i x= − v
R1 − g m v = 0 but v = −v x
i x= v x
R1+ g m v x = 0 R th=v x
i x = 1 1
R1+ g m
10kΩ+ 0.025S
= 39.8 Ω
vi 39.8 Ω
Trang 7Norton equivalent circuit:
The short circuit current is:
in = v
75kΩ+ 0.002v and v = v i → in = v i
75kΩ+ 0.002v i = 2.01x10−3v i
To find the Thévenin equivalent resistance, we apply a test source to the output with vi set to zero:
Summing currents at the output node:
i x= − v
R1 − g m v = 0 but v = −v x
i x= v x
R1+ g m v x = 0 R th=v x
i x = 1 1
R1+ g m
75kΩ+ 0.002S
= 467 Ω 2.01 x 10-3 vi
467 Ω
Trang 81.27
(a)
i n= −βi but i = −v i
R1 and i n= β
R1v i = 150
39kΩv i = 3.85 x 10−3v i
R th=v x
i x ; i x = v x
R2 +βi but i = 0 since v R1= 0 R th = R2=100 kΩ
Noton equivalent circuit:
v th = v oc= −βiR2 where i+βi +i i = 0 and v th = R2 β
β+1
i i =100kΩ 150
151
i i = 99300i i
Rth is found in part (a)
ii
99300
100
Trang 9(a)
v th = v oc= −β i R2 but i = −v i
R1 and v th =β v i R2
R1 =120 v i
56kΩ
75kΩ= 89.6 v i
R th=v x
i x ; i x = v x
R2 +βi but i= 0 since vR1= 0 R th = R2 = 75 kΩ
Thévenin equivalent circuit:
(b)
v th = v oc= −β i R2 where i+βi +i i = 0 and v th = R2 β
β+1
i i = 75kΩ 120
121
i i = 74400 i i
89.6 vi
75 kΩ
ii
Trang 10R th=v x
i x ; i x = v x
R2 +βi but i+βi = 0 so i = 0 and R th = R2= 75 kΩ
Thévenin equivalent circuit:
1.29
(a) i i= v i
R1−βi= v i
R1+β v i
R1 = v i
β+1
R1 R=v i
i i = R1
β+1=
100kΩ
76 =1.32 kΩ
(b) Source is ii in part (b)
v i = −iR1 and i i = −i −βi= −(β+1)i R=v i
i i = − −1
β+1R1=100kΩ
76 =1.32 kΩ
1.30
The open circuit voltage is v th = −g m v R2 where v = +i i R1
v th = −g m R1R2i i= − 0.0025( ) 2x105
( ) 2x106
( )i i =1.0 x 109
i i
For i i = 0, v = 0, and R th = R2 = 2 MΩ
74400 ii
75 kΩ
Trang 11( ) R AB =10kΩ+10kΩ 10kΩ+ 10kΩ 10kΩ ( )=16 kΩ
b
( ) R CD =10kΩ 10kΩ+ 10kΩ 10kΩ ( )= 6 kΩ
c
( ) R EF =10kΩ 10kΩ 10kΩ+10kΩ( )= 4 kΩ
d
( ) Terminals B & D are the same as E & F R BD = 4 kΩ
1.32
1.33
Ω resistor was shorted, or the 82 kΩ resistor was open, then the output
Trang 12kΩ resistor was open, the output would be -9 V Otherwise the voltage would be between –9 and +9 volts
1.35
1.36
1.37
10−4∠00 = 4x104∠56o A = 4x104 ∠A = 56 o
1.38
(a) A=10−1∠−12o
2x10−3∠0o = 50∠−12o A = 50 ∠A = -12o
(b)
1.39
(a) A v= −R2
R1 = −560kΩ
12kΩ = −46.7 (b) A v= −360kΩ
18kΩ = −20.0 (c) A v= −62kΩ
2kΩ = −31.0
1000 2000
f(Hz)
v
5V
3V
Trang 131.40
v o( )t = −R2
R1v i( )t = −7500
910 (0.01sin 750πt )= −82.4 sin 750( πt ) mV
i i = v i
R1= 0.01V
910Ω=11.0μA and i i( )t = 11.0 sin 750( πt) μA
1.41 Since the voltage across the op amp input terminals must be zero, v- = v+ and vo = vi
Therefore Av = 1
1.42 Since the voltage across the op amp input terminals must be zero, v- = v+ = vi Also, i- = 0
1.43 Writing a nodal equation at the inverting input terminal of the op amp gives
v1− v−
R1 +v2− v−
R2 = i−+v−− v o
R3 but v-= v+= 0 and i- = 0
v o= −R3
R1v1−−R3
R2v2= −0.255sin3770t − 0.250sin10000t ( ) volts
Trang 141.44
b 1 b 2 b 3 v O (V)
000 0
001 -0.625
010 -1.250
011 -1.875
100 -2.500
101 -3.125
110 -3.750
111 -4.375
1.45 Low-pass amplifier
1.46 Band-pass amplifier
Trang 151.48 Refers to Prob 1.45
1.49
1.50 The gain is zero at each frequency: vo(t) = 0
1.51
t=linspace(0,.005,1000);
w=2*pi*1000;
v=(4/pi)*(sin(w*t)+sin(3*w*t)/3+sin(5*w*t)/5);
v1=5*v;
v2=5*(4/pi)*sin(w*t);
v3=(4/pi)*(5*sin(w*t)+3*sin(3*w*t)/3+sin(5*w*t)/5);
plot(t,v)
plot(t,v1)
plot(t,v2)
plot(t,v3)
Trang 16(b)
(c)
-2 -1 0 1 2
-10 -5 0 5 10
-10 -5 0 5 10
Trang 171.52
(a) 4700 1( −.01)≤ R ≤ 4700 1+.01( ) or 4650Ω ≤ R ≤ 4750Ω
(b) 4700 1( −.05)≤ R ≤ 4700 1+.05( ) or 4460Ω ≤ R ≤ 4940Ω
(c) 4700 1( −.10)≤ R ≤ 4700 1+.10( ) or 4230Ω ≤ R ≤ 5170Ω
1.53
1.54
1.55
Yes, the resistor is within the allowable range of values
1.56
(a) 5V 1( −.05)≤ V ≤ 5V 1+.05( ) or 4.75V≤ V ≤ 5.25V
V = 5.30 V exceeds the maximum range, so it is out of the specification limits
(b) However, if the meter is reading 1.5% high, then the actual voltage would be
1.57
-10 -5 0 5
x10-3
Trang 181.58
At 30 o C, 7500Ω 1− 0.05( )≤ R ≤ 7500Ω 1+ 0.05( ) or 7120 Ω ≤ R ≤ 7880 Ω
Adding the effect of TC for ΔT = 45oC:
Rmin= 7120Ω 1+ 452200
106
= 7820 Ω Rmax= 7780Ω 1+ 45 2.2x10 ( −3)
7820 Ω ≤ R ≤ 8550 Ω with accumulated rounding
7830 Ω ≤ R ≤ 8650 Ω more exact calculation
1.59 I = 200 μA, R1 = 150 kΩ, R2 = 68 kΩ and R3 = 82 kΩ
I1= I R2+ R3
R1+ R2+ R3
1+ R1
R2+ R3
and similarly I2= I 1
1+R2+ R3
R1
I1max= 200 1.02( )
1+ 150kΩ 0.90( )
68kΩ 1.1( )+82kΩ 1.1( )
μA=112 μA I1min= 200 0.98( )
1+ 150kΩ 1.1( )
68kΩ 0.90( )+82kΩ 0.90( )
μA= 88.2 μA
I2max= 200 1.02( )
1+68kΩ 0.90( )+82kΩ 0.90( )
150kΩ 1.1( )
μA=112 μA I2min = 200 0.98( )
1+68kΩ 1.1( )+82kΩ 1.1( )
150kΩ 0.90( )
μA= 88.2 μA
V3= I2R3= 1 I
R1+ 1
R3+ R2
R1R3
1
150kΩ 1.1( )+82kΩ 1.11( )+
68kΩ 0.9( )
150kΩ 1.1( ) (82kΩ) ( )1.1
9.60 V
1
150kΩ 0.9( )+
1
82kΩ 0.9( )+
68kΩ 1.1( )
150kΩ 0.9( ) (82kΩ) ( )0.9
= 6.89 V
Trang 19Let R X = R2 R3 then V1= V R1
R1+ R X
= V1
1+R X
R1
RXmin=30kΩ 0.9( ) (11kΩ) ( )0.9
30kΩ 0.9( )+11kΩ 0.9( )= 7.24kΩ RXmax=30kΩ 1.1( ) (11kΩ) ( )1.1
30kΩ 1.1( )+11kΩ 1.1( ) = 8.85kΩ
V1max= 1 1.05( )
1+ 7.24kΩ
24kΩ 1.1( )
= 0.824 V V1min= 1 0.95( )
1+ 8.85kΩ
24kΩ 0.9( )
= 0.674 V
R1+ R X
and I2= I1
R3
R2+ R3
R1+ R X
1+R2
R3
I2max= 1 1.05( )
24kΩ 0.9( )+ 7.24kΩ
1
1+(30kΩ) ( )0.9
11kΩ 1.1( )
=11.3 μA
I2min
= 1 0.95( )
24kΩ 1.1( )+8.85kΩ
1
1+(30kΩ) ( )1.1
11kΩ 0.9( )
= 6.22 μA
I3= I1
R2
R2+ R3
= I1
1+R3
R2
I3max= 1 1.05( )
24kΩ 0.9( )+ 7.24kΩ
1
1+(11kΩ) ( )0.9
30kΩ 1.1( )
= 28.0 μA
I3min= 1 0.95( )
24kΩ 1.1( )+8.85kΩ
1
1+(11kΩ) ( )1.1
30kΩ 0.9( )
=18.6 μA
1.61
From Prob 1.24: R th = 1
g m+ 1
R1
Trang 201.62 For one set of 200 cases using the Equations in Prob 1.59 (mA & kΩ):
I = 0.200* 0.98+ 0.04* RAND()( ) R1=150* 0.9 + 0.2* RAND()( )
R2= 68* 0.9 + 0.2* RAND()( ) R3= 82* 0.9 + 0.2* RAND()( )
1.63 For one set of 200 cases using the equations in Prob 1.60
V =1* 0.95+ 0.1* RAND()( ) R1= 24000* 0.9 + 0.2* RAND()( )
R2= 30000* 0.9 + 0.2* RAND()( ) R3=11000* 0.9 + 0.2* RAND()( )
1.64 3.29, 0.995, -6.16; 3.295, 0.9952, -6.155
1.65 (a) (1.763 mA)(20.70 kΩ) = 36.5 V (b) 36 V
(c) (0.1021 A)(97.80 kΩ) = 9.99 V; 10 V