1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Cutting Fluids‘ Everything flows and nothing_5 pptx

10 112 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 0,95 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Cutting Fluid Mists Mists resulting from machining operations and their subsequent collection resulting from the application of cutting fluids, are usually given a low priority by most m

Trang 1

Figure 211 Some typical, but extreme skin disorders – attributed to exposure to cutting fluids [Courtesy of Castrol Industrial]

.

Trang 2

Many  other  skin  conditions  can  occur  and  their 

causes can emanate from a number of MWF sources 

–  going  beyond  the  current  scope  and  objectives  of 

this chapter. Although through the application of bar-rier and conditioning creams, together with clean and 

suitable protective clothing, coupled to good washing 

facilities, these factors will inevitably lessen the pos-sibility of allergic reactions and skin disorders

Tumours and Cancerous Effects

However,  less  well  known  than  the  allergic  and  skin 

condition  previously  mentioned,  are  the  other  more 

serious debilitating health effects on the machine tool 

personnel  exposed  to  MWF’s.  Industrial  experience 

suggests that continuous and long exposure to certain 

mineral oils can give rise to skin thickening, known as 

keratosis, whereby ‘warty-elevations’ (i.e. see Fig. 211b) 

can slowly develop over a period of some years. Hence, 

these warts will either: remain as they are; disappear; 

or in the worse case scenario, become malignant. 

A  considerable  volume  of  research  in  both  the 

chemical  and  biological  fields  has  been  undertaken, 

in  particular,  into  the  effects  of  mineral  oils  in 

cut-ting fluids and their affect on worker’s health. Mineral 

oils may contain carcinogens – chemical compounds 

which  are  active  in  causing  cancer,  with  currently,  a 

number  of  these  compounds  having  been  identified. 

They occur in the main, as polycyclic aromatic hydro-carbons and, when present in modern refined mineral 

oils exist in extremely small proportions – making their 

‘positive’ chemical identification exceedingly difficult 

to  define.  Oil  refinement  by  acid  treatment  has  now 

been  replaced  by  more  modern  refining  techniques, 

including solvent-refined treatment and hydrogenera-tion  –  greatly  reducing  the  undesirable  proportions 

of  aromatic  compounds  (i.e.  these  latter  compounds 

being  potential  carcinogens).  Moreover,  chemical 

coolants  were  originally  based  on  diethanolamine 

and  sodium  nitrate,  which  for  some  time  have  been 

suspected  of  forming  ethanolnitrosamine  –  another 

suspected  carcinogen.  In  order  to  remove  this 

pos-sible carcinogen, in 1984, cutting fluid manufacturers 

removed the nitrates from their formulations. Finally, 

 

‘N-nitrosamines’ , and its chemical compounds are a signifi-cant  danger  to  worker’s  health  and,  the  American 

Environ-mental Protection Agency (EPA), stated in a report of their 

findings in 1974, that: ‘As a family of carcinogens, the

nitrosa-mines have no equal.’

if  one  considers  permissible  exposure  levels  (PEL’s)  from nitrosamine sources. Then, it has been stated that 

smoking twenty (untipped) cigarettes per day will de-liver 0.8 micrograms of various nitrosamines which al-most equates to eating a kilogram of fatty bacon per day 

(i.e.  6  microgrames),  thus,  when  undertaking  these   seriously  debilitating  smoking/eating  toxicity  habits  over a significant period of time, they would consider-ably increase the risk of cancer

Cutting Fluid Mists

Mists resulting from machining operations and their  subsequent collection resulting from the application of  cutting fluids, are usually given a low priority by most  manufacturers when compiling a list of potential capi- tal items for the workshop. To press this point still fur-ther, many companies would much sooner purchase a  new  machine  tool,  than  install  a  special-purpose  air  cleaner.  In  the  automotive  industries  interest  in  the  level  of  air  quality  has  some  degree  of  importance,  while elsewhere in smaller production workshops it is  somewhat of a hit-or-miss affair. Given the potential  worker  health  risks  involved  today,  with  high-speed  machining  (HSM)  coupled  to  increased  tooling  cut-ting  data  and  higher-pressure  coolant  supplies  (i.e.  see Fig. 195 – top), possibly the greatest threat posed 

to a worker is from atomised mists (i.e. sub-µm size)  within  the  local  atmosphere.  Many  companies  that  incorporate mist collection filtering, will only remove  particles of >4 µm in size, leaving the critical sub-µm  particles still present in the atmosphere. 

The earliest chemical interventions to reduce mist-ing  were  high-molecular-weight  polymer  additives,  that act to stabilise MWF’s and thus suppress mist for-mation.  With  conventional  petroleum-based  fluids,  polyisobutylene has been the preferred anti-mist ad- ditive. While, for aqueous-based cutting fluids, poly-ethylene  oxide  (PEO)  has  been  utilised.  Due  to  the  susceptibility  of  PEO’s  to  shear  degradation,  repeti- tive additions of the PEO polymer are needed to main-tain  mist  reduction.  Today,  a  newer  class  of  shear-stable polymers has been developed to overcome the  shear degradation as indicated by PEO’s. These latest  polymer  products  have  been  derived  from  complex:  2-acrylamido-2methlypropane sulphonic acid mono-mers,  hence,  providing  longer-term  performance  in  continuously  recirculating  aqueous-based  MWF  sys-tems. 

So, very high concentration cutting fluid mists will  over  a  short  period  of  time  cause:  ‘smarting’  of  the 

Trang 3

eyes; irritation of exposed skin; result in slight irrita-tion  of  the  mouth  and  throat;  by  inhalation,  will 

ir-ritate the lungs; by ingestion, of the stomach – it may 

promote  nausea;  and  affect  other  internal  organs. 

If exposed to toxic mists over a long period of time, 

this could cause lasting damage to both external and 

internal  bodily-parts,  with  at  the  extreme  condition, 

promoting the growth of malignant tumours. In order 

to restrict misting and minimise operator health risks, 

then  special-purpose  filtering  systems  have  been 

de-veloped, which will be briefly reviewed below

The  conventional  mist-collection  technology, 

such as: filters; rotating drums; or cyclones; will col-lect  particles  of  >1 µm  in  diameter,  but  cannot  cope 

with smaller sub-µm particles. Further, it has been re-ported  that  fibrous  filters  once  they  are  wet,  lose 

ef-

ficiency over time – see Fig. 212. Therefore, the opti-mum manner of removing sub-µm mists are by fitting 

one of the following: High-efficiency Particulate Air

fil-ters (HEPA); Electrostatic Precipitators

(ESP’s); or Fi-bre-bed

systems. Probably the two best systems for re-moval of sub-µm mist particles are the HEPA and ESP 

systems. Each one has its disadvantages, with HEPA fil-

ters being expensive and become clogged, thereby los-ing efficiency. So, when disposable filter replacements 

are needed this hidden replacements cost, will result 

in both costly maintenance and disposal. While, ESP’s 

need  frequent  maintenance  and  cleaning,  thus 

rep-

resenting a continuous on-going cost burden. Mean-while, Fibre-bed systems offer high efficiency in mist 

collection,  but  with  ease  of  maintenance,  although 

they are larger requiring more electrical power to op-erate them. 

Vegetable Oil-Based MWF’s

Driven  by  the  health  and  safety  concerns  of  both 

workers and manufacturers alike, vegetable oil-based 

MWF’s have been developed, to substitute for the same 

machining operations as either the mineral-, or petro-leum-based  fluids,  currently  undertake.  It  has  been 

reported  that  compared  with  mineral  oil-based 

cut-

ting fluids, the alternative vegetable-based MWF’s, en-hance cutting performance by extending tool life while 

improving  machined  surface  texture,  with  the 

addi-tional  benefit  of  being  an  environmentally-friendly 

MWF.  In  particular,  Soybean oils have  shown 

con-siderable  promise  as  a  practical  alternative  to 

‘tradi-tional’ MWF’s, where they have improved component 

surface  texture  and  reduced  tool  chatter.  One  of  the 

principle  reasons  for  these  surface  texture  and 

ma-chining improvements, is that the vegetable oil-based 

MWF’s have enhanced lubricity, coupled with a slight 

‘polar-charge’  –  which  acts  to  attract  the  vegetable  oil molecules to the metallic surface being tenacious  enough to resist any subsequent wipe-off. The oppo-site is true for a mineral-based oil, where there is no  molecular  charge,  so  offers  little  improvement  in  lu-bricity. 

Mineral-based  MWF’s  are  just  straight  hydrocar-bon,  while  their  vegetable  oil  counterparts  contain  oxygen,  which  is  tenaciously-attracted  to  the  sterile  elevated temperature of the recently-machined work-piece’s  metallic  surface,  thus  it  bonds  more  strongly  – acting as a result as a better lubricant. Yet another  performance  benefit  of  utilising  vegetable-based  oils  over their mineral-based equivalents, is that they have 

a  higher  ‘flash-point’ ,  which  reduces  both  the  ten-dency for smoke formation and fire-risk. Yet another  reason  for  selecting  a  vegetable-based  MWF  over  its  mineral-based counterpart, is that it has a high natural  viscosity.  Hence,  as  the  machining  temperature 

increases, the viscosity of the vegetable oil drops more slowly than for that of a mineral oil. Conversely, as the  temperature falls, the vegetable oil remains more fluid  than its counterpart mineral oil. Thus, facilitating more 

efficient and quicker drainage from both the swarf and 

workpiece.  The  high  viscosity index  of  vegetable  oil  ensures that it provides more lubricity-stability, across  the operating temperature range being found during a  range of machining operations. High viscosity allows  vegetable oils to be used as a slideway lubricant and  for gear lubrication in gearboxes, acting as a so-called: 

‘multi-functional fluid’ (i.e. see Section 8.9). 

Along with the above stated benefits, there is also 

a down-side to vegetable-based fluid applications, the 

limitations are that they lack sufficient oxidative sta-  ‘Flash-point’ of oils, is the instantaneous ignition of the oil at 

a specific temperature, without the aid of a flame. So, in the  case of a Soybean oil it has a flash-point of 232°C, while a typi-cal mineral oil has a flash-point of just 113°C. 

  ‘Viscosity’ , can be defined* as: ‘The resistance of a fluid to shear

force.’  Therefore,  the  shear  force  per  unit  area  is  a  constant 

times the velocity gradient, with the constant being the coef-ficient of viscosity. SI units are: Newton-seconds per square  metre  (Ns  m–),  denoted  by  the  Greek  symbol:  ‘µ’.  [Source:  Carvill, 1999]

  *While another definition for a fluid’s viscosity is: ‘The bulk property of a fluid, semi-fluid, or semi-solid substance that causes it to resist flow.’ [Kalpakjian, 1984]

  ‘Viscosity index’ ,  can  be  defined  as:  ‘A measure of a fluid’s

change of viscosity with temperature: the higher the index, the smaller the relative change in viscosity.’ [Kalpakjian, 1984]

Trang 4

bility  for  many  machining  applications.  Thus,  a  low 

oxidative stability means that the oil will oxidise quite 

quickly during use, becoming thick as it polymerises 

to a plastic-like consistency. Once the oil has become 

too thick, or even too thin for that matter, the cutting 

tool’s edge(s) will quickly wear-out. Vegetable oils be-come oxidised and as a result, will chemically change, 

along  with  their  viscosity  and  lubricating  abilities.  There is some concern among users of vegetable-based  cutting fluids, that this oil reacts with the environment  (i.e. oxygen and metals), thus breaking-down, which 

is not the case for petroleum-based products. Both of  these  fluid  products  oxidise  with  heat,  but  vegetable  oils are more susceptible to oxidation. While another 

Figure 212 At the filter some droplets and volatiles are

re-moved from the atmosphere, but the remainder pass through

and are entrained Other particulates are ‘indefinitely’

re-tained, but with time reduce filter efficiency Optimum filters

re-entrainment – at a reasonable pressure-drop [Source: Raynor

P & Leith, D – Univ of North Carolina, 2003]

Trang 5

of  hydrolytic stability.  Typically,  when  making  an 

emulsion; obviously oil and water are present; so if ox-ygen and some form of alkaline component is at hand, 

it may cause certain ester linkages within the vegetable 

oil  to  break  down.  These  broken-down  components 

act in a different manner to that of the original vegeta-ble oil, thereby affecting its cutting fluid performance. 

Conversely, mineral-based cutting oils are resistant to 

hydrolytic reactions. Vegetable oils can support micro-

bial growth more readily than the equivalent mineral-

based cutting fluids. Although this vegetable oil’s bio-degradability is ideal for subsequent waste treatment, 

conversely,  when  this  product  is  ‘festering’  in  a 

ma-chine’s sump, it becomes both smelly and sour, via its 

bactericide and fungicide reactions. Finally, for many 

companies, probably the biggest limitation in changing 

over to vegetable-based products in machining opera-tions is its purchase cost. For example, canola oil, can 

cost up to 300% more than its equivalent petroleum-based product and to compound the financial problem 

still further, costly ingredients are necessary to control 

oxidation and enhance its biological stability – consid-erably adding to the finished product’s cost

8.12 Fluid Machining

Strategies: Dry;

Near-Dry; or Wet

So  far,  this  chapter  has  been  principally  concerned 

with all aspects of flood/wet coolant applications to the 

overall machining process. Several other complemen-tary cutting strategies can be adopted, these include: 

dry; near-dry; together with wet machining; thus, in 

the following sections a discussion of these important 

issues and concerns will be briefly mentioned

 

‘Hydrolytic stability’: ester molecules consist jointly of con-densed  fatty  acids  and  alcohols;  so  the  vegetable  oils  will 

 naturally  exist  as  esters  –  often  termed  ‘triglycerides’ ,  these 

being a condensation of fatty acid, plus glycerine. Under the 

right conditions, the triglyceride can split and revert back to a 

fatty acid and glycerine, which acts differently from that of the 

original ester. In the case of mineral-based oils, they do not

contain these ester linkages and as such, will not break down, 

nor ‘hydrolise’.

8.12.1 Wet- and Dry-Machining –

the Issues and Concerns

In  the  past  twenty-five  years  the  cost  of  cutting  flu-ids  has  risen  from  just  3%  of  the  overall  cost  of  the  machining  process,  to  that  of  >15%  of  a  production  shop’s cost. Cutting fluids and especially ones that are  oil-based products have become something of a liabil-ity of late, this is due in the main, to many countries 

‘Environmental Protection Agencies’ , strictly regulat-ing their ensuing disposal – at the end of their natural  life. In many countries ‘spent’ cutting fluids have been  re-classified  as  either  ‘toxic-’ ,  or  ‘hazardous-waste’ ,  moreover, if they have been found to have machined  certain  alloyed  and  exotic  material  workpieces,  they  are  under  even  harsher  disposal  regulations.  Due  to  the increasing popularity today of high-speed machin-ing (HSM) – more will be said on this subject in the  following chapter – coupled to increased cutting data  and the application of coolants via high-pressure sys-tems,  these  factors  have  significantly  contributed  to  the  creation  of  air-borne  mists  within  the  workshop  environment  (i.e.  see  Fig.  212).  Such  coolant  mists  now  have  even  stricter  permissible  exposure  levels  (PEL’s) imposed in the working environment, to regu-late and control these air-borne particulates, thereby  minimising  workers  health  risks.  Thus,  the  cost  of:  fluid maintenance; record-keeping; with strict compli-ance to current and proposed regulations, have rapidly  increased the overall price of cutting fluids. In many  manufacturing  companies  involved  in  a  significant  amount  of  machining  operations,  they  are  consider-ing the strategy of cutting dry, to overcome the cutting  fluid-based  costs  and  disposal  concerns  during  and   after their subsequent usage. 

For many companies involved in significant work-piece  machining  operations,  they  are  unsure  if  they  could cut all their components ‘dry’. Furthermore, they  are under the impression that to achieve higher cutting  data  and  ‘hard-part’  machining,  then  cutting  fluids  are essential in achieving these objectives. Moreover,  many companies also believe that the cost of chang-ing from a ‘wet-’ to ‘dry-machining’ operations would 

be prohibitively high. Neither of these impressions are  true. So, by machining ‘dry’ it can be considered as a  standard  operational  procedure  for  most  metal-cut- ting operations, including: turning, drilling and mill- ing operations (i.e see Figs. 39, 49 and 168a, respec-tively). Moreover, it is not only possible to ‘hard-part’:  turn (Fig. 15) and bore (Fig. 65b); or mill (Fig. 172);  etc.; but these can now be classified as highly-profit-able ‘dry-machining’ activities. 

Trang 6

Probably  the  chief  obstacle  to  dry-machining 

ac-ceptance,  is  that  conventional  wisdom  dictates  that 

MWF’s are vital in attaining acceptable machined fin-ishes and will considerably extend the tooling’s life. In 

many  circumstances  these  are  valid  points,  but  with 

some  of  the  advanced  cemented  carbide  grades  and 

high-technology  coatings,  such  tooling  can  be 

oper-ated  at  higher  cutting  data  than  was  previously  the 

case and, cope with their elevated machining tempera-tures. In fact, if interrupted cutting occurs, the hotter 

the cutting zone becomes, the more unsuitable will be 

the application of a cutting fluid – as the thermal shock

becomes greater with a ‘wet-machining’ strategy

Present tool coating technologies are vital to dry-

machining applications, as they both control the tem-perature  fluctuations,  while  restricting  heat  transfer 

from  the  cutting  vicinity  to  the  insert,  or  tool. 

Mul-tiple  coatings  act  as  a  heat  barrier  because  they 

of-fer  a  lower  thermal  conductivity  to  that  of  the  tool’s 

substrate  and  the  workpiece  material.  Thus,  coated 

inserts/tooling absorb less heat and as a result, can tol-

erate higher cutting temperatures, allowing more ag-gressive cutting data, whilst not debilitating the tool’s 

life. Coating thickness is also important, as the thin-ner the overall coatings, the better they can withstand 

temperature  fluctuations,  that  might  otherwise  arise, 

if thicker coatings were utilised. The main reason for 

this improved thermal shock performance of thinner, 

rather than thicker tool coatings, is that a thinner coat 

is less likely to incur the same stresses, hence, they are 

less susceptible to cracking as a result. So, by running 

thin coatings in ‘dry-machining’ operations, normally 

extends tool edge life by up to 40%, over thicker coat-ings. 

  ‘Thermal shock/fatigue’ ,  the  cyclical  nature  of  both  rapid 

heating followed by immediate cooling – in for example face-milling  (i.e  see  Fig.  213 – top),  or  when  interrupted  turning 

(e.g. when eccentric turning, or OD/ID machining with either 

splines  and  keyways  present),  promotes  potential  tool  edge 

fracturing – resulting from the cyclic thermal stresses and in-

creased temperature gradients, being exacerbated by the ap-plication of a cutting fluid.

  ‘Thin coats-v-thick coats’ , the former coating offers longer life 

than the latter coating process. Today, it is normal to utilise the 

coating process of: physical vapour deposition (PVD) as this 

type of coating is thinner and will adhere/bond more strongly, 

than  the  alternative  chemical vapour deposition  process.  For 

example, a TiAlN PVD coated insert/tool can have a hardness 

of 3,500 Hv, withstanding cutting temperatures up to 800°C.

‘Dry-machining’ – some Factors for Consideration

•  Adopting a ‘dry machining’ strategy will only make 

sense, if all the cutting processes in the part’s manu-facture can be performed without coolant,

  Only  by  utilising  specialised  cutting  tool 

geome-tries, can ‘dry-machining’ be possible and effective,

  Tooling typically having special hard multi-layered, 

or  diamond-like coatings,  etc., to  isolate heat and  create minimal thermal conduction across the tool/ chip interface,

  Employing cutting tool materials producing sharp edge geometries – to reduce heat,

  For drilling operations, utilise ‘soft-glide’ coatings –  for lubrication, with the necessary and appropriate 

efficient chip transportation geometries,

  Speedy and efficient removal of both chips and as-sociated steam – by suction – are important factors 

in ‘dry-machining’ ,

  Utilise  new machining  concepts,  plus  the  latest  fully-enclosed machine tools – whenever possible,

  Employ faster, rather than slower cutting data, to al-low the majority of heat to be confined to the evacu-ated chips.

8.12.2 Near-Dry Machining

The strategy of ‘near-dry’ machining is not a new con-cept, it has been in existence for more than 50 years.  However,  this  machining  and  lubricating  approach 

is  still  not  a  universal  practice,  which  is  surprising  when one considers the real benefits that accrue from  the practice over its ‘wet-machining’ counterpart. As  its name implies, in ‘near-dry’ machining little lubri-cant is used – normally vegetable-based oils, meaning  that both cutting fluid treatment and its disposal are  eliminated. Further, instigating a ‘near-dry’ machining  strategy means that there are fewer worker health risks 

from resultant mists, which might otherwise create: re-NB  From  a  metallurgical/materials  science  viewpoint,  the: 

TiAlN – PVD tool coating can attribute its superior mechani-cal/physical  properties  to  an  amorphous  aluminium-oxide  film that forms at the tool/chip interface, as some of the alu- minium of the coating surface oxidises at these elevated ma-chining temperatures. While, even more exotic multiple-type 

diamond-like coatings

can be applied and their like, which of-fer even greater cutting performance – in certain machining  circumstances, when applied to the tool’s cutting edge(s).

Trang 7

cutting approach can be exploited across a wide range 

of either ferrous, or non-ferrous workpiece metals. 

Most machine tools are equipped with the capabi-lity of supplying flood coolant to the cutting process, 

together with ‘through-coolant’ tooling systems, mean-ing that the cost to reconfigure for that of a ‘near-dry’ 

technology  is  not  prohibitive.  Assuming  the 

worse-case  scenario  of  requiring  a  through-coolant 

tool-ing system, then probably just over $5,000 at today’s 

prices should prove sufficient capital to complete the 

task.  Some  re-tooling  to  complement  the  ‘near-dry’ 

machining  production  techniques  may  be  necessary, 

allowing the precise application of lubricant to the cut-ting edge(s). Further, the user must consider a method 

for efficient chip removal from the cutting area. Usu-ally,  with  external  ‘near-dry’  cutting  operations,  the 

lubricant  is  transported  within  the  media  of  a 

com-pressed air application, via the correct-sized aperture 

nozzle – pointed toward the cutting zone. Control of 

the volume of lubricant delivery to the tool and work-piece area is critical, with the common misconception 

being that more lubricant is better! The optimum ar-rangement for ‘near-dry’ lubricant application, is when 

the minimum of over-spray and resultant misting does 

not occur. 

With  external  ‘near-dry’  operations,  dispensing 

systems usually consists of reservoir metering pumps 

and valves, being mounted on the machine tool’s exte-rior – at some convenient location. While the nozzles 

are  strategically-mounted  so  that  they  can  easily  be 

directly aimed at the tool’s cutting edge(s). Normally, 

the  nozzles  are  a  manufactured  from  either  copper, 

or  plastic  and  ‘snap-together’  –  being  much  smaller 

in  size  than  their  ‘wet-machining’  counterparts.  For 

internal  machining  operations,  having  tooling  with 

‘through-the-nose’  delivery,  the  lubricant  is  mixed 

with  compressed  air  prior  to  delivery  to  the  cutting 

zone.  The  admixing  of  compressed  air  and  lubricant 

keeps the lubricant in suspension, with these oil par-ticles being broken-down into minute particles prior 

to being fed into the compressed air jet stream – on 

their way to the tooling

For  ‘conventional’  flood  coolant  delivery  the 

sys-tems, the coolant channels are filled with cutting fluid, 

which inevitably finds its way to the cutting zone. If 

however,  in  a  ‘near-dry’  machining  configuration,  a 

heavy mist of lubricating oil floats through the com-pressed  air,  attempting  to  negotiate  all  of  the  twists 

and turns on its way to the cutting zone, this may pres-ent  a  potential  lubrication  clogging/starvation 

prob-lem. Hence, for a successful ‘near-dry’ delivery system,  the  lubricant  channels  need  to  be  smooth  and  even,  with direct flows from the coolant pump to the cutting  zone. 

A  basic  misapprehension  by  some  machine  tool  designers and manufacturers, is that copious volumes 

of flood coolant are necessary to remove large quanti-ties  of  swarf.  In  fact,  just  the  opposite  can  occur,  as  wet chips will not only pack tightly together but have 

a surface tension property to them, tending to make  them  adhere  to  machine  tool  surfaces  (i.e.  see 

Foot-note 29, ‘Lang’s chip-packing ratio’ in Chapter 2). This 

is not generally the case for ‘near-dry’ lubrication, as  the chips here, have a thin layer of non-oxidising lu-bricant  surrounding  them  and  with  their  evacuation  velocity  –  after  being  machined,  coupled  to  gravita-tional effects, means that they will fall to the bottom 

of the swarf tray, or into the chip conveyor. It is good  working practice to use the external air-only supply’s  blow-off nozzles to clear away chips form the cutting  area0, however, it is not recommended to use the oil/ mist to achieve chip clearance, as it will simply blow  the  lubricant  straight  past  the  cutting  edge(s),  while  probably  creating  an  unwanted  oil-misting  problem. 

It is possible to incorporate both ‘wet-’ and ‘near-dry’  lubrication  systems  onto  the  same  machine  tool.  It  has been reported that for external/internal work the  change-over from one system say, from ‘wet-’ , to the  other – ‘near-dry’ , takes about 3 minutes to complete.  For  ‘near-dry’  machining  to  be  successful,  it  de- pends upon various factors, including: workpiece ma-terial to be machined; tool geometry and its coating(s);  speeds  and  feeds  selected;  plus  other  important  fac- tors. If applied correctly, ‘near-dry’ machining has sig-nificant direct and indirect benefits to the machining  process as a whole. 

Economics of: ‘Dry-’; ‘Near-Dry’;

and ‘Wet-Machining’.

For  any  tool  and  workpiece  lubrication  strategy  to  operate effectively, a range of cost factors need to be  considered,  regardless  of  the  method  of  machining 

0  ‘Chilled compressed air’ , has been successfully utilised in the 

past  for  not  only  removing  chips  from  the  cutting  vicinity,  but on certain materials, the continuous application of chilled  compressed air acts simply as a form of ‘basic lubricant’ for  the cutting process in hand. 

Trang 8

to  show  the  relative  merits  of  the  three  machining 

strategies  previously  discussed,  namely:  ‘dry-’; 

‘near-dry’; or ‘wet-machining’. The cost component for each 

of these lubrication strategies has been broken down 

into its relevant parts, with some of them not being ap-plicable to every lubrication application. If one ignores  the  individual  cumulative  factor  in  the  overall  cost  and simply looks at the ‘bottom-line’ , namely, the total  relative costs for each process, then a clear message is  being given here! Explicitly, that ‘wet-machining’- in  certain  cases,  when  compared  to  ‘dry-machining’  is 

Figure 213 Indicates the comparative costs for utilising either: ‘dry-’, ‘near-dry-’ or ‘wet-machining’ strategies

.

Trang 9

>330% more expensive overall, this being a good rea-son  to  look  carefully  at  employing  ‘dry-machining’ 

techniques – when applicable!

In  Appendix  14,  a  MWF  ‘trouble-shooting  guide’ 

has been included, to help establish the relative causes 

and  remedies  for  certain  fluid-related  problems  –  as 

they arise

References

Journals and Conference Papers

Antoun, G.S. The Pressure’s On to Improve Drilling

[High-Pressure  and  Volume  Coolant  Supply].  Cutting  Tool 

Eng’g., 59–68, Feb., 1999

Batzer, S. and Sutherland, J. The Dry Cure for Coolant Ills. 

Cutting Tool Eng’g., 34–44, June, 1998

Benes, J. Life Support – for Cutting

Fluids, American Ma-chinist, 42–46, Feb., 2007

Benes, J. Engineering Metalworking

Fluids. American Ma-chinist, 48–51, March, 2007

Boyles,  C.M.  Managed Fluid Care.  Cutting  Tool  Eng’g., 

40–45, Jan., 2002

Brutto, P. Water Hazard [Leaching Cobalt Binder from WC 

Tooling]. Cutting Tool Eng’g., 50–56, Dec., 1996

Da Silva, M.B., Machado, A.R. Wallbank, J. On the

Mecha-nism of Lubrication in Single Point Cutting.  Int.  Conf. 

on:  Behaviour  of  Materials  in  Machining, 

Strafford-upon-Avon (England), Pub. by: IOM Communications 

Ltd, 79–89, Nov. 1998

Davidian, S. Setting Standards

[Metalworking Fluid Stand-ards]. Cutting Tool Eng’g., 52–55, Sept., 2001

DeChiffre,  L.  Testing the Overall Performance of Cutting

Fluids. Lubric. Eng’g., Vol. 34 (5), 244–251, 1978.

DeChiffre,  L.  Mechanical Testing and Selection of Cutting

Fluids. Lubric. Eng’g., Vol. 36 (1), 33–39, 1980.

Deodhar, J. Soluble Cutting Fluids: Chemistry, Management

and Control.  Int.  Conf.  on  Industrial  Tooling 

South-ampton, UK, Shirley Press Ltd., 151–158, Sept. 1995

Dunlap, C. Should you try Dry? [Dry Machining]. Cutting 

Tool Eng’g., 22–33, Feb., 1997

Eade, R. Are Metalworking Fluids a Threat to

Health? Cut-ting Tool Eng’g., 80–86, Aug., 1998

El  Baradie,  M.A.  Cutting Fluids: Characterisation Part I. 

Int. Conf. On Adv. In Matls and Process. Technol., Vol. 

III, Dublin City Univ. Press, 1999–2010, Aug., 1993

El Baradie, M.A. Cutting Fluids: Recycling and Clean

Ma-chining Part II. Int. Conf. On Adv. In Matls and Process. 

Technol., Vol. III, Dublin City Univ. Press, 2011–2019, 

Aug., 1993

Excell,  M.  Well Oiled Machines [Machine  Tool 

Lubrica-tion]. Metalworking Production, 53–56, Dec., 1995

Folz, G. Treat MWFs

[Metal Working Fluids] Right. Cut-ting Tool Eng’g., 36–42, Oct., 2003

Graham, D. Dry Out [Dry Machining]. Cutting Tool Eng’g., 

56–65, Mar., 2000

Gugger,  M.  Putting Fluids to the Test [Testing  Methods]. 

Cutting Tool Eng’g., 54–62, Aug., 1999

Howard,  R.  Types of Cutting Fluids used on Turning/Ma-chining

Centres. Int. Conf. on Industrial Tooling (South-ampton, UK), Shirley Press, 140–150, Sept. 1995

King,  N.  Ah, the Smell of It [Microbiological  Colnat 

Ef-fects]. Manufact. Engr., 7–9, Dec., 1991/Jan. 1992

Krahenbuhl,  U.  Lightening [Coolant  Lubricity].  Cutting 

Tool Eng’g., 28–34, Sept., 2002

Leep, H.R. Investigation of Synthetic Cutting Fluids in Drill-ing, Turning and Milling Processes. Lubric. Eng’g., Vol. 

37 (12), 715–721, 1981

Manfreda,  J.  and  Elenteny,  D.  Cool Savings,  Cutting  Tool 

Eng’g., 42–51, Feb., 2006

Phillips, D. Under Pressure

[High-Pressure Coolant Deliv-ery]. Cutting Tool Eng’g., 48–53, Jan., 2000

Phillips,  D.  Dry Run [Dry  Drilling].  Cutting  Tool  Eng’g., 

34–40, Feb., 2000

MCCabe, J. Dry Holes – Dry Drilling Study. Cutting Tool 

Eng’g., 40–50, Feb., 2002

Protch, O. Fluid Cutting. Cutting Tool Eng’g., 40–43, Dec., 

2001

Rahman, M., Senthil Kumar, A. and Salam, M.U. Experi-mental Evaluation on the Effect of Minimal Quantities of Lubricant in

Milling. Int. J. of Mach. Tools and Manu-fact., Vol. 42, 539–547, 2002

Shanley,  A.  Mist Collection: The Pressure is On.  Cutting 

Tool Eng’g., 46–51, June, 2003

Sluhan, W. Don’t Recycle – Keep your Coolant. Cutting Tool 

Eng’g., 53–55, Oct., 1993

Sluhan, W. Selecting Coolants: Why and How. Cutting Tool 

Eng’g., 56–65, Oct., 1995

Sluhan,  W.  Does Your Machine Like Its Coolant?

[Water-miscible Cutting Fluid Concerns]. Cutting Tool Eng’g.,  62–69, April, 1996

Sluhan,  W.  Humans and Cutting Fluids [Health  Issues]. 

Cutting Tool Eng’g., 88–92, June, 1996

Sluhan,  W.  Pure Water – Isn’t Hard to Find [Hard  Water 

Problems]. Cutting Tool Eng’g., 28–32, Dec., 1996

Sluhan, W. Bubble Trouble [Foaming Effects]. Cutting Tool 

Eng’g., 24–28, April, 1997

Sluhan,  W.  Itching for a Solution [Causes  of  Dermatitis]. 

Cutting Tool Eng’g., 36–43, Dec., 1997

Sluhan, W. The Good, the Bad and the Smelly

[Bacterial Ef-fects]. Cutting Tool Eng’g., 24–32, Mar., 1998

Smith, A. Lagerberg, S. Dahlam, P. and Kaminski, J. High-pressure [Coolant] Jet-assisted Turning,  Int.  Conf.  on 

Industrial Tooling Southampton, UK, Molyneux Press  Ltd., 62–71, Sept. 1999

Trang 10

Smith, G.T. Managing and Controlling Cutting Fluids in a

Flexible Manufacturing Environment.  Proc.  of 

Manag-ing Integrated Manufacturing, Keele Univ. Press, Vol.1, 

491–503, 1993

Smith,  G.T.  Wet and Dry Machining – Understanding the

Key Issues.  Metalworking  Production,  22–24,  Oct., 

2000

Smith, P.L. Coolants and Cancer: Fact or Fiction? American 

Machinist, 46–50, Dec., 1996

Threadgill, J. Animal, Vegetable, or Mineral [Sump-cleaning 

Strategies]. Cutting Tool Eng’g., 30–35, Sept., 1993

Walz, T. Fine Ideas [Ultra-filtration]. Cutting Tool Eng’g., 

48–52, May, 2002

Woods,  S.  Going Green  [Vegetable  Oils],  Cutting  Tool 

Eng’g., 48–51, Feb., 2005

Yang, C.C. The Effects of Water Hardness on the Lubricity of

a Semi-synthetic Cutting Fluid. DeChiffre, L. Testing the

Overall Performance of Cutting Fluids.  Lubric.  Eng’g., 

Vol. 35 (3), 133–136, 1979

Woods,  S.  Going Green [Alternative:  Vegetable-based 

MWF’s]. Cutting Tool Eng’g., 48–51, Feb., 2005

Woods,  S.  Nearly Dry [Nearly-dry  Machining].  Cutting 

Tool Eng’g., 58–64, Mar., 2006

Books, Booklets and Guides

Byers, J.P. Metalworking Fluids. Marcel Dekkar (NY), 1994.

Carvill,  J.  Mechanical Engineer’s Data Handbook. 

Butter-worth-Heinemann Pub., 1997

Hartley, D. Cutting Fluids – Their Care and Control. Reprint 

from: Maintenance Eng’g., May, 1979

Mang,  T.  Wassemischbare Kühlschmierstoffe für die

Zer-spanung [Water-miscible  Metalworking  Fluids].  Vol. 

61, Kontakt and Studium, Tribotechnik. Expert Verlag, 

Grafenau, 1980

Kronenberg,  M.  Machining Science and Application. 

Per-gamon Press (NY/London), 1966

Metalworking Fluids. Pub. by: Verlag/Cincinnati Milacron, 

1991

Metal Working Fluids Guide.  Kuwait  Petroleum 

Inter-national Lubricants Pub

Moubray, J. Reliability-centred

Maintenance, Butterworth-Heinemann , 1996

Nachtman, E.S. and Kalpakjian, S. Lubricants and Lubrica-tion in Metalworking OperaLubrica-tions. Marcel Dekkar (NY), 

1985

Robertson,  W.S.  Lubrication in Practice.  Esso  Petrol.  Co. 

Ltd.,/Macmillan Educ. Ltd., 1987

Schey, J.A. Tribology in Metalworking – Friction, Wear and Lubrication. ASM Pub. (Ohio, USA), 1983.

Sluhan, C. Cutting and Grinding Fluids: Selection and Ap-plication. Soc. Of Manufact. Engrs., (Dearborn, Mich., 

USA), 1992

Smith,  G.T.  CNC Machining Technology: Vol 2: Cutting, Fluids and Workholding Technologies.  Springer-Verlag, 

1993

Smith, G.T. Condition Monitoring of Machine

(Edited  by:  Rao,  B.K.N.),  Elsevier  Advanced  Technol-ogy, 1996

Talking About – Cutting Fluids Castrol  (U.K.)  Ltd,  Pub. 

No.: IND 71b/9/91, Sept., 1991

Ltd., 1990

Yust, M.S. and Becket, G.J.P. Microbiology Theory and Prac-tice in Metalworking Fluids. Reprint from: Ind. Lubric. 

& Trib., Nov./Dec. 1980

Ngày đăng: 21/06/2014, 22:20