1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Cutting Fluids‘ Everything flows and nothing_2 ppt

10 285 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 665,63 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Thus, the ‘ideal’ cutting fluid would not cause the typical problems of: foaming in soft waters; or forming insoluble soaps in hard waters, • Freedom from tacky, or gummy deposits – as

Trang 1

may have a susceptibility to staining, so here, it is 

prudent  to  discuss  the  problem  with  the  cutting 

fluid manufacturer, 

Water-supply compatibility – a water-soluble cut-ting fluid should ‘ideally’ be capable of being diluted 

with any water supply. Geographical locations can 

create variations in water supply and its condition, 

this latter factor is especially true for water hardness 

(i.e see Fig. 199b), where its hardness can vary quite 

considerably.  Thus,  the  ‘ideal’  cutting  fluid  would 

not  cause  the  typical  problems  of:  foaming in  soft 

waters; or forming insoluble soaps in hard waters,

• Freedom from tacky, or gummy deposits – as water 

soluble fluids dry out on a machine, or component’s 

surface, the water content evaporates to leave a resi-due which is basically the product concentrate. This 

residue  should  ideally  be  light  and  wet,  allowing 

it to be easily wiped-off. However, any gummy, or 

tacky deposits collect swarf and debris, necessitat-ing increased machine and component cleaning,

• ‘Tramp oil’ tolerance – is a lubricating, or hydraulic 

oil which leaks from the machine tool and contam-inates the cutting fluid. Most modern machines are 

equipped with ‘total-loss’ 

 slideway lubricating sys-tems which can contaminate the cutting fluid with 

up to a litre of oil per day – on a large machine tool. 

The ‘ideal’ cutting fluid would be capable of toler-ating  this  contamination  without  any  detrimental 

effects on its operating performance. Some cutting 

fluids  are  formulated  to  emulsify  the  ‘tramp-oil’ , 

while  other  fluid  formulations  reject  it,  allowing 

  ‘Total-loss’ fluid systems, are as their name implies in that they 

purposely leak oil to the machine’s bearing surface, requiring 

periodic  tank  replenishment.  When  this  oil  leaks-out  of  the 

machine  tool  it  is  termed:  ‘tramp-oil’ ,  therefore  the  oil  will 

eventually end up in the machine tool’s coolant tank, where it 

is either tolerated by the coolant product, or is separated-out, 

requiring periodic ‘tramp-oil skimming’.

NB  ‘Tramp-oil’  losses  are  invariably  not  accounted  for  in 

many  production  shops,  which  invariably  means  their 

‘eco-nomic  model’  for  such  losses  are  habitually  not  considered, 

or  not  even  thought  about  by  the  company.  It  has  been 

re-

ported that on a quite ‘large-sized’ horizontal machining cen-tre, it can lose up to 365 litres of ‘tramp-oil’ per annum, which 

is an on-going cost that needs to be addressed. Multiply this 

individual  machine  tool  loss  by  the  number  of  machines  in 

the manufacturing facility and this will represent considerable 

unaccounted for expenditure!

the residual ‘tramp-oil’ to float to the surface for re-moval by physical ‘skimming’ ,

• Cost-effectiveness – but what does this term mean? 

There  was  a  time  when  the  cost-effectiveness  was  simply judged in terms of the price per litre of the  product  concentrate.  Fortunately,  there  are  only  few engineering companies who still take this view,  with  most  recognising  that  there  are  many  inter-related  factors  that  contribute  to  cost-efficiency.  Some of these factors might be the: dilution ratio;  sump-life;  material  versatility;  tool  life;  machined  component quality; health and safety aspects; plus  many others. 

Having identified the ‘ideal’ cutting fluid features, one 

must  unfortunately  face  reality,  as  there  is  no such  product that encompasses all of these desirable charac-teristics – at the optimum level in just one cutting fluid  product. However, all cutting fluids are not equal and 

even apparently similar products may well perform in  quite different ways! Therefore, it is for the machine-shop  supervisors/managers  –  in  conjunction  with  other interested parties: purchasing; health and safety;  unions; etc., to select a reputable supplier who is pre- pared to undertake the necessary survey and ‘trouble-shooting’ exercise to recommend the best fluid(s) for a  particular manufacturing environment. 

Today,  there  are  many  different  types  of  cutting  fluids  available  they  can  be  classified  according  to  widely varying criteria, although some unified system 

of terminology exists in various countries guidelines  and Standards. This commonality of ‘language’ reflects  both the chemical and technical requirements of the  users. On the basis of the various countries publicised  cutting  fluid  literature,  the  following  classification 

is perhaps the most useful – from the user’s point of  view. Broadly speaking, it was previously shown in Fig. 

197, that cutting fluid groups are of two main types, 

either  ‘oil-’ ,  or  ‘aqueous-based’.  The  ‘aqueous’  cutting  fluids can be divided into ‘emulsifiable’ and ‘water-sol-uble’ types. As has already been mentioned, the former 

‘oil-based’ cutting fluids are supplied as ready-for-use  products, while ‘aqueous’ types are normally found in  the form of a concentrate, which must be mixed with 

water, prior to use. Once mixed with water, the ‘emulsi-fiable’ cutting fluids form an emulsion, conversely, the 

‘soluble’ variety forms a solution. In both of these cases,  the  resultant  cutting  fluid  product  is  termed:  ‘water-mixed’. In the following section, the various types of 

cutting fluids currently available will be briefly men-tioned

Trang 2

8.4.1 Mineral Oil, Synthetic,

or Semi-Synthetic Lubricant?

Mineral Oil

In order to manufacture cutting fluids the raw materi-als are naturally occurring oils, such as: mineral oils; 

animal and vegetable oils; or fats. Of these oils, the for-mer mineral oils are probably most commonly utilised 

by the manufacturing industry. These mineral oils, in 

a  similar  fashion  to  naturally  occurring  oils,  tend  to 

be  complex  mixtures  of  widely  varying  compounds. 

Such compounds consist of carbon and hydrogen and as 

such, are usually referred to a ‘hydrocarbons’. In addi-tion, they will contain: sulphur; nitrogen; plus various 

trace elements. 

So that the mineral oil can be separated out to form 

a ‘stock oil’

– with natural lubricating properties, ther-mal processes are employed by the fluid manufacturer. 

These  partly-refined  ‘stock-oils’  are  still  chemically 

complex mixtures of hydrocarbons, with widely vary-ing  characteristics.  By  way  of  an  example  of  the 

di-verse nature of ‘crude oil’ , it is a mixture of more than 

one  thousand  hydrocarbons,  with  different  chemical 

structures.  Such  widely  varying  characteristics  make 

it impossible to supply mineral oil to closely defined 

specifications, which limits its uses and performance 

as a cutting fluid. The complex structure of a cutting 

fluid made up entirely from naturally occurring oils, is 

schematically illustrated in Fig. 198a. 

Synthetic Lubricants

The  use  of  Synthetic lubricants  cannot  be  compared 

with  those  lubricants  that  are  extracted  from 

natu-rally occurring oils, since the properties of the latter 

are always an aggregate of the properties of their many 

different components, as such, cannot be exactly pre-dicted. While the former synthetic lubricants are made 

from two types of raw material:

1 Mineral oil – normally from: polyalpha olefin and 

alkali aromatics,

2 Polybutenes.

At  present  (i.e.  from  around  the  late  1980’s,  until 

now),  synthetic  hydrocarbons  predominate,  as  they 

are not derived from mineral oils, they have become 

of  increased  importance.  In  particular,  they  include 

derivatives  from  ‘fractioning’ of  plant  oils.  The  most significant  classes  of  compounds are  the  esters  and  polyglycols. These synthetic lubricants being a solution 

of chemicals, which usually contain: corrosion inhibi- tors; biocides; dyes; in water. Moreover, they may con-tain such additions as synthetic lubricity additives and 

wetting  agents.  Synthetic lubricants form  transparent solutions and as a result, provide good visibility of the 

cutting operation. 

In use, synthetic fluids require special attention in  their application, because they contain no mineral oil,  they tend not to leave a corrosion-protective oily film 

on machine surfaces. As a result, it is essential to lubri- cate exposed machine tool surfaces carefully. In addi-tion to this lack of protection, there may be some effect 

on certain paint finishes and even degradation of the  machine’s seals, as a result of this synthetic fluid enter-ing  the  machine  tool’s  lubrication  system.  Normally,  these problems of practical usage, limit these synthetic  lubricants in the main, to grinding operations

Semi-Synthetic Lubricants

Today, the use of Semi-synthetic lubricants, or ‘Micro-emulsions’ – as they are sometimes known, has become 

much more widespread, because of certain advantages  they have over mineral-soluble oils

By  increasing  the  ratio  of:  emulsifier-to-oil  in  the  formulation,  either  by  reducing  the  oil  content,  or 

by  increasing  the  level  of  emulsifiers,  the  product  takes  on  different  characteristics  from  those  of  min-eral-soluble oils. Due to this increased ‘ratio’ , the oil  particles formed, are significantly smaller than those  found with the mineral-soluble oil types (i.e. see Fig. 

201a). Hence, these ‘micro-emulsions’ , visually appear 

to be translucent, or even transparent, owing to the fact  that the oil particles are smaller than the wavelength of light

(i.e. <0.5 µm). This translucency is an obvious ad-vantage where workpiece visibility is important to the  machine setter/operator. In addition, the high level of  emulsifiers in the product leaves some ‘spare capacity’ ,  which  enables  the  ‘micro-emulsion’  to  emulsify  any  oil-leakage  from  the  machine.  This  emulsification  of 

 

‘Fractionation’ , is the breakdown of crude oil into its constit-uents (i.e. fractions), by distillation.

Trang 3

Figure 198 The basic structure of an oil-based cutting fluid and an ‘oil-in-water’ emulsifying molecule [Courtesy of

Cimcool]

.

Trang 4

Figure 199 The principle of polar and passivating corrosion protection and the minimum requirements for water

quality [Courtesy of Cimcool]

.

Trang 5

the formation of a layer of ‘tramp-oil’ on the surface – 

which might otherwise encourage unwanted bacterial 

growth. The definition of Semi-synthetic cutting fluids

can cause some difficulty, but generally the oil content 

is much lower than with the mineral-soluble oils, rang-ing from approximately 10 to 40%. 

Additives  for:  corrosion  inhibition;  bacterial 

con-trol; lubricity0; EP; are employed in the same manner 

as for mineral-soluble oils, also, there is often an addi-

tion of a blue, or pink dye, as these translucent micro-

emulsions can appear to look somewhat ‘watery’ oth-erwise.  Although  translucent  micro-emulsions  are 

initially  formed,  Semi-synthetics do  not  go  cloudy  in 

use. They contain excess emulsifiers to ensure that fine 

micro-emulsion of oil particles are formed in water. As 

previously mentioned, these ‘spare’ emulsifiers enable 

the  micro-emulsion  to  absorb  tramp  oil.  Hence,  as 

these ‘spare’ emulsifiers are consumed by suspending 

the ‘tramp-oil’ , both the amount of oil in the emulsion 

and the oil particle size increases. This increase in oil

particle size causes more incident light to be reflected 

and results in the visual ‘clouding effect’

within the lu-bricant. In particular, this ‘cloudiness’ of the lubricant 

is not necessarily an indication that there is anything 

wrong with the fluid, it is merely an suggestion of the 

oil absorbed by the cutting fluid. 

All cutting fluids, whether ‘aqueous-’ , or ‘oil-based’ , 

may contain some: mineral oils; synthetic products; or 

a combination of both. The choice of raw material and 

composition depends on certain parameters and their 

actual  composition  (i.e  its  formulation)  will  depend 

  ‘Emulsification of tramp-oil’ when using Semi-synthetic oils, 

will only occur, until all of the ‘spare’ emulsifiers are used up! 

Therefore, after this time, the excess ‘tramp-oil’ will float on 

the cutting fluid’s surface.

NB  Some  Semi-synthetic  formulations  will  emulsify  only 

small  quantities  of  ‘tramp-oil’ ,  while  others  can  emulsify 

much larger concentrations.

  Perhaps the easiest and best fluid definition is this: ‘A

semi-synthetic cutting fluid forms a translucent emulsion and

con-tains mineral oil’

0  ‘Lubricity’ , or ‘Oiliness’

as it is often known, is difficult to de-

fine with any precision. One reasonable definition is that Lu-bricity is: ‘[The significant] differences in friction greater than

can be accounted for on the basis of viscosity, when comparing

different lubricants under identical test conditions.’ [Source: 

American Society of Automotive Engineers]

upon many factors, which is closely-guarded secret by  any lubricant manufacturer. 

8.4.2 Aqueous-Based Cutting Fluids

A large proportion of cutting fluids used for machin-ing operations are still of the aqueous-based types (Fig.  197), as they combine the excellent heat-absorbing ca-pacity of water, with the lubricating power of chemical  substances. Such cutting fluids offer excellent cooling,  lubricating and wetting properties. Machine tools re-quire protection from the lubricant ingress and should 

be compatible with lubricating and hydraulic systems 

on  the  machine,  making  it  possible  to  apply  water-mixed  cutting  fluids  to  the  manufacturing  environ-ment.  The  aqueous-based  lubricants  can  be  utilised  across  quite  a  diverse  range  of  workpiece  materials,  ranging from steels, to non-ferrous metals. 

An  aqueous  cutting  fluid  can  consist  of  naturally  occurring  oils  such  as:  mineral  oil;  synthetic  mater-ial;  or  a  combination  of  both,  but  generally  they  are  present in the form of an emulsion, or solution – as  previously  discussed.  Other  forms  of  cutting  fluids,  such  as:  suspensions;  gels;  pastes;  are  rarely  used  in  the production process. Hence, the commonest form 

in which aqueous cutting fluids are used is as an emul-sion.  Much  of  this  cutting  fluid  terminology  has  al-ready been discussed, but is worth restating, to ensure  that its significance is sufficiently comprehended. An  emulsion is a disperse system formed by mixing two  fluids which are not soluble in each other. In the emul-sion, one of the fluids forms the internal phase, which 

is dispersed in the form of droplets suspended in the  external  phase,  or  ‘medium’  –  as  its  is  often  known.  Such  corresponding  cutting  fluids  are  of  two  types: 

‘emulsive’ , or ‘emulsifiable’ – of which the former type 

is normally the most commonly used. The ‘emulsive’  cutting  fluid  consists  of  an  oil-in-water  emulsion,  in  which the oil forms the internal phase. While its coun-terpart,  the  ‘emulsive’  type  is  the  ‘emulsifiable’  solu-tion,  consisting  of  a  water-in-oil  emulsion,  but  here,  the water is the internal phase – lately this cutting fluid  has become less important

An aqueous ‘emulsive’ cutting fluid always contains 

a  stock  oil,  usually  having  a:  mineral  oil;  synthetic  hydrocarbon; synthetic ester; or fatty oil, etc.; together  with  certain  additives  to  the  formulation.  The  most  important  additives  tend  to  be:  ‘emulsifiers’;  corro-sion inhibitors; stabilisers and solubilisers; anti-foam 

Trang 6

see Fig. 197). Consideration will now be given to each 

of these ‘additives’ in turn:

‘Emulsifiers’

The  ‘emulsifiers’  are  necessary  to  help  form  a  stable 

emulsion and as such, are very important for the tech-nical characteristics of the cutting fluid. ‘Emulsifiers’ 

make it possible for the oil droplets to form and re-

main suspended in water, preventing them from merg-ing and floating upwards to form a surface layer in the 

fluid’s tank. ‘Emulsifiers’ reduce the surface tension and 

form a lubricating film at the boundary surface. These 

‘emulsifier’ molecules are bipolar in characteristic and 

as a result ‘line-up’ like the bristles on a brush, with 

one end toward the oil and the other end facing the 

water, as shown in Fig. 198b. In this way, the ‘emulsi-fier’ forms a film which is one molecule thick at the 

boundary surface

Corrosion Inhibitors

The main task of a corrosion inhibitor in any aqueous 

cutting fluid is to prevent the water in the fluid from 

corroding the exposed portions of the machine tool, 

such as its: slideways; spindle nose; ballscrews; etc. The 

mechanism  by  which  different  corrosion  inhibitors 

operate, will vary widely and one commonly used ver-sion of ‘inhibitor’ , consists of an additive which forms 

a  protective  film  on  the  exposed  metal’s  surface. 

  ‘Galvanic corrosion’ , for two metals in contact

in the ‘electro-chemical series’ the further apart they are in this ‘series’ , the 

greater their electro-potential and the faster the rate of

corro-sion. For example, in this ‘series’ gold (i.e. being a ‘noble metal’) 

is at one extreme, thus having a potential difference of +1.70 

v – being cathodic, while at the other end of the galvanic table, 

calcium  (i.e.  being  a  ‘base metal’)  has  a  potential  difference 

of –2.87 v – being anodic. Hence, the anodic metal will cor-rode, while the cathode remains unchanged, hence in gold’s 

case, the term ‘noble’ metal is used.Thus, water-miscible flu-ids can penetrate between bolt threads, setscrews and fixtures 

and as water is an electrolyte – a liquid that can conduct an 

electrical current, the presence of water produces a galvanic 

electrical current flow between these mating parts. So, say on 

a lightweight workpiece fixture – perhaps made from alumin-ium (–1.67 v) with this being located onto a machine tool’s 

table – normally produced from cast iron (–0.44 v). Thus, the 

potential difference here being 1.23 v, which is not too acute, 

as both these metals are in fact, relatively close-together in the 

‘electro-chemical series’. 

These  corrosion  inhibitors  consist  of  long,  narrow  molecules which are negatively-charged and as such,  are attached to the metal in contact (Fig. 199a – top 

schematic diagram, shows: rust protection by polari-sation, whereas the lower schematic diagram depicts;  rust protection by a passifying film). These ‘films’ that 

are  subsequently  formed,  are  no  thicker  than  just  a  few molecules and as such, are invisible. Nevertheless,  such ‘films’ can effectively prevent the electro-chemi-cal process of corrosion, such as passivation by means 

of nitride, but the latter type is now being effectively  phased-out. 

Stabilisers and Solubilisers

Stabilisers  considerably  extend  the  life of  the  concen- trate, while solubilisers act to increase the oil’s solubil-

ity. Various alcohols and glycols can be used as stabi-lisers, or solubilisers

Anti-Foaming Agents

Anti-foaming  agents  are  often  known  by  the  alter-native  names  of:  ‘anti-froth-’;  or  ‘defrothing-agents’;  being utilised to prevent the formation of foam. Sili-cones, while being subject to certain restrictions have  proved  in  the  past  to  be  very  popular  anti-foaming  agents. A typical restriction to that of using silicones  additives in machining operations, might be because  afterward it may prove difficult to either: paint; coat; 

or  adhesively-bond  to  the  machined  parts.  In  the  past when both the coolant pressures and flow rates  were low, foaming did not present too great a prob-lem,  but  nowadays,  the  pressures  and  flow  rates  are  much  greater  and  severe  coolant  agigtation  can  re-sult, creating potential foaming conditions. Foaming 

is at its most prevalent when a newly-charged clean  and fresh cutting fluid is employed and as this coolant 

is  contaminated  with:  ‘tramp-oil’;  metal  fines;  abra-sive grains; from the subsequent machining process,  these  contaminants  will  tend  to  suppress  foaming  tendencies. 

NB  Galvanic corrosion occurs between contact of dissimilar 

metals – in the presence of an electrolyte. This electrolytic con- tact might at the least cause either: surface staining; mild corro-sion; or pitting, with its severity depending upon how long the  two metallic surfaces are in contact in the presence of water.

Trang 7

Today,  anti-foaming  agents  tend  to  be 

‘branch-chained’  higher  alcohols  –  being  insoluble  in 

wa-ter,  or  as  mentioned  above,  silicones.  Both  alcohols 

and  silicones  evidently  disrupt  the  foam-producing 

surface  film  with  that  of  an  alternative 

gas-perme-able  surface  film,  causing  the  surface-active  liquid 

surrounding  each  bubble  to  drain  away,  causing  the 

foam layer to collapse. If severe foaming occurs, anti-foaming agents are not the answer, as eventually these 

‘anti-foams’  get  carried  away,  or  filtered-out  of  the 

coolant on the resultant machined: chips and swarf; 

workpieces;  or  on  coolant  filters.  The  problem  to 

foaming  may  not be  due  to  the  lack  of  ‘anti-foams’ , 

but may be the result of air leaks that are sucking air 

into  the  coolant  stream.  These  air  leaks  often  arise 

around  the  pipe  unions,  or  at  pipe-connectors  to 

either  the  valves  and  pumps  in  the  coolant  delivery 

system

Microbiocides

Microbiocides  are  often  added  to  the  aqueous-based 

cutting fluid as they help prevent the dramatic and un-

controlled growth of microbes in the coolant. Micro-

biocides uses are normally limited, owing to the po-tential  skin-care  consideration  –  more  will  be  said 

concerning this very important topic later in the chap-ter, when ‘health-issues’ will be discussed. 

8.4.3 Water Quality

The  main  constituent  of  any  aqueous-based  cutting 

fluid is obviously water and by nature, it is impure. The 

impurity depends on the source: rain-; river-; spring-; 

ground-water;  etc.  The  water  may  also  contain:  dust 

particles;  oxygen;  nitrogen;  calcium  and  magnesium 

salts;  often  with  smaller  quantities  of:  ammonia; 

bo-ron;  flourine;  ibo-ron;  nitrate;  strontium;  aluminium; 

arsenic;  barium;  phosphate;  copper  and  zinc. 

Addi-tionally,  the  water  has  in  its  presence 

micro-organ-isms,  such  as:  algae;  bacteria;  fungi  and  viruses  (i.e. 

see  Fig.  203);  although  in  different  orders  of 

magni-tude.  So,  depending  on  its  composition,  water  can 

affect  the  aqueous-based  cutting  fluid  in  many  ways 

and  since  the  composition  varies  throughout  the 

year,  these  seasonal  variations  will  have  an  effect  on 

its use. By far the greatest effect on the properties of 

the cutting fluid is caused by the hardness of the water. 

Water’s hardness depends on the concentration of ele-ments such as: calcium, magnesium and other heavy  metals like iron and manganese. Hard water may cause 

a soapy deposit, which will eventually block filters, or  destabilise the emulsion and may have a detrimental  effect on the fluid’s corrosion protection. Equally, soft  water can be a problem, but for a different reason, in  this case it can promote foaming under ‘abusive’ ma-chining conditions. 

The  degree  of  alkalinity  of  the  water  can  be 

ex-pressed as a pH-value (i.e. see the pH-scale shown in 

Fig. 202b) and this is an important measurement, as 

it affects its usage and can react to human skin  caus-ing ‘serious complaints’ – more will be said concerning  these  health  issues  later  in  the  chapter.  Alkalinity  in  the main, affects the growth of microbes (i.e. see Fig.  203b) and the degree of corrosion protection afforded 

  ‘Water hardness levels’ , are calculated based upon the quantity 

of  ‘grains’  of  hardness  minerals  the  water  contains.  By  way 

of  example,  one grain of  calcium  carbonate,  constitutes  17.1 parts million– (ppm) per 3.785 litres (i.e. equivalent to a U.S. 

gallon). ‘Salts’ such as sodium chloride and sodium sulphate  are found in hard water, where they contribute to corrosion, or  rust – if not ‘inhibited’. Moreover, the greater the cutting fluid’s  solution salt content, the more coolant concentrate is required 

to prevent subsequent corrosion. Further, coolant degradation  occurs  with  time  and  usage.  For  example,  a  new  charge  of  relatively  soft  water  admixed  with  coolant  concentrate,  will  initially have say, a 3-grain hardness, but after one month’s use  its hardness will have increased to between 12–14 grains and,  after two months this hardness will have increased still further, 

to  between  24–27  grains.  This  problem  is  exacerbated  if  the  water content evaporates, needing periodic cutting fluid analy-sis to maintain optimum coolant performance.One method of  significantly reducing water of its hardness minerals, is to run 

it  through  a  water  softener,  which  removes  the  calcium  and  magnesium ions, replacing them with sodium ions, although  residue build-up will be significantly reduced, corrosion may  now  be  a  problem,  so  for  this  reason  softened  water  is  not  recommended  when  using  water-miscible  coolants.  Other- wise, boil the water – ensuring that no softener, or anti-cor-rosion agents were present prior to using the condensed water  product (i.e from the boiling process). Deionized water is the  best source of pure water, as a deionizer removes all dissolved  minerals, creating distilled water. 

  ‘Human skin’ ,  varies  from  one  body-region  to  another,  but 

generally, it has a pH-level slightly biased toward the acidic 

region of the scale, at approximately 6.8 pH (e.g. a value of 7.0 

pH is considered as ‘neutral’).

NB  Skin  also  has  a  protective  layer  of  natural  oils,  that  act 

to retard moisture evaporation, acting as a form of ‘defensive  shield’ against some forms of biological attack.

Trang 8

in improved protection, particularly when machining 

ferrous workpieces. In view of the importance of water 

composition  for  the  effectiveness  of  a  water-mixed 

cutting fluid, it is essential to know the quality of the 

water source available and to take account of this fac-

tor when selecting a concentrate. Cutting fluid manu-facturers  undertake  water  analysis,  as  do  local  water 

companies. In Fig. 199b, the minimum requirements 

for  water  quality  for  aqueous-based  cutting  fluids  is 

shown. 

8.5 Cutting Fluid

Classification – According

to Composition

Generally speaking, cutting fluids are purchased under 

the following classifications, according to their com-position:

• Synthetic fluids –  are  those  cutting  fluids  which 

contain  very  little,  or  no  natural  oil.  The  various 

components  such  as  the  actual  cutting  fluid  are 

finely  distributed  in  water,  as  such,  they  form  a 

 watery transparent solution – shown in a schematic 

representation  in  Fig.  200a.  The  applications  of 

synthetic  cutting  fluids  range  from  light-to-heavy 

cutting,  together  with  usage  in  grinding 

applica-tions. In order to ensure the necessary lubricating 

power desirable for heavy cutting operations, some 

of these products contain synthetic lubricants (Fig. 

200b).  The  major  properties  of  synthetic  cutting 

fluids can be summarised as follows:

–  A very clean and transparent fluid,

–  Excellent corrosion protection,

–  A long life cutting fluid,

–  Outstanding cooling capabilities,

–  Easy to mix,

–  Does not burn, or smoke

• Semi-synthetic fluids – can contain up to 41% oil 

and when mixed with water they have a translucent 

property (Fig. 200c). Extreme pressure (EP) addi-tives and synthetic lubricant can be added, in order 

to widen the range of potential workpiece materials 

and applications. The properties of semi-synthetic 

cutting fluids can be summarised in the following 

manner:

–  Very clean in appearance, –  Excellent corrosion protection, –  Long life of cutting fluid, –  Outstanding cooling capabilities, –  Good wetting properties, –  Easy to mix,

–  Does not burn, or smoke

• Emulsion fluids – contain a high proportion of oil 

and  when  the  concentrate  is  mixed  with  water  it  has a ‘milky appearance’ (Fig. 201a). Cutting fluid  products intended for very heavy cutting operations  additionally contain EP additives (Fig. 201b). The  properties  of  an  emulsion  cutting  fluid,  are  sum-marised below:

–  Clean, –  Offer good corrosion resistance, –  Long life of emulsion,

–  Outstanding cooling capabilities, –  Easy to mix,

–  Do not burn, or smoke

Finally, for all of these various cutting fluid types and  compositions, the differences in the range of applica- tion of: synthetic; semi-synthetic; emulsion fluids; de-pends upon the respective machining requirements. In 

general, the heavier the cutting operation, the higher the  cutting forces produced and the greater the oil content  required.  This  observation,  means  that  synthetics  are  normally used for lighter cutting operations, whereas,  emulsions are usually utilised for heavy-cutting appli-cations, while the semi-synthetics tend to be employed 

as a general-purpose (i.e. alternative) cutting fluid. 

8.6 Computer-Aided

Product Development

The latest cutting fluids are very complex products and 

a considerable amount of research and development (R  and D) is required to perfect them. The quantity of raw  materials  that  have  differing  characteristics  and  the  number of interactions between them, means that the  possible combinations are potentially enormous. Even  when most of the possible combinations are obviously  unnecessary and hence could be disregarded, this still  leaves the possibility of many thousands of coolant ad-ditive  permutations  and  their  respective  interactions 

to  investigate,  which  would  be  a  ‘Herculean  task’  to 

Trang 9

Figure 200 Schematic representation of synthetic variaties of cutting fluids [Courtesy of Cimcool]

.

Trang 10

further,  this  situation  of  determining  the  optimum 

combination  is  analogous  to  that  of:  ‘looking  for  a 

needle in a haystack’ , where the conventional empiri-cal methods become no better that in effect, searching 

at random! Luckily a solution is at hand, by the evalu-ation using computer technology, when utilised with 

specially-developed programs. Computer-aided prod-uct development will as a result, efficiently provide a 

solution backed-up by statistical techniques, enabling 

many  thousands  of  combinations  to  be  assessed, 

re- ducing the final choices to just a few cutting fluid com- binations. In this way it is possible to rapidly and ac-curately optimise the solution, as depicted in Fig. 204,  where a Computer-aided Design (CAD) application is  used to select – in this case – a corrosion inhibitor for 

a potentially-new cutting fluid. Such computer-based  techniques  have  brought  about  a  means  of  develop-ing cutting fluid products, using the CAD to not only 

‘screen-out’ formulations which do not fit the present  machining requirements, but can also uncover previ-

ously unsuspected properties – resulting form syner-Figure 201 Schematic representation of emulsion varieties of cutting fluids [Courtesy of Cimcool]

.

Ngày đăng: 21/06/2014, 22:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN