1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Cutting Fluids‘ Everything flows and nothing_3 pot

10 178 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 682,04 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Further, these CAD-based techniques guarantee a chemically-stable product with the optimum properties, reducing the risk of selecting the wrong type of cutting fluid both by the manufac

Trang 1

Figure 202 A cutting fluid emulsion’s diametral size (0.2 to 1.5 µm) in comparison with micro-organisms and ‘tramp oil’, together

with the ‘pH scale’ [Courtesy of Kuwait Petroleum International Lubricants]

.

Trang 2

Figure 203 Bacterial contamination: aqueous cutting fluid

.

402 Chapter 8

Trang 3

Figure 204 Computer-Aided Design (CAD), utilised to select a corrosion inhibitor for an aqueous-based

cutting fluid [Courtesy of Cimcool]

.

Trang 4

gies.  As  an  example  of  this  phenomenon,  anionic 

emulsifiers normally have corrosion inhibiting charac-teristics, but these properties are usually so slight that 

any side-effects are usually disregarded. However, by 

using CAD, it is possible to find emulsifiers – normally 

several  are  needed,  whose  side-effects  add  up 

syner-getically

When the correct emulsifiers are selected and in the 

right proportions, not only is the desired emulsifying 

action obtained, but at least some of the required cor-rosion protection also occurs. In Fig. 204, an example 

of  the  ‘construction’  of  a  corrosion  inhibitor  system 

using a variety of inhibitors – either singly, or in com-bination – can be comprehended. Here, the ‘zero-line’ 

on the vertical axis of the graph represents: ‘no effect’ , 

while values greater, or less than zero represent a: posi-tive; or negative effects; respectively. 

Such CAD for chemical compounds makes it pos-sible  to  develop  ‘atomised’  cutting  fluids  far  faster 

than by previous techniques and offers the prospect of 

discovering  entirely  new  cutting  fluid  combinations. 

Computer  analysis,  offers  a  way  to  develop,  analyse 

and test new cutting fluids, enabling very rapid modi-

fications to be incorporated in order to meet new tech-nical  and  commercial  requirements.  Further,  these 

CAD-based techniques guarantee a chemically-stable 

product  with  the  optimum  properties,  reducing  the 

risk of selecting the wrong type of cutting fluid both 

by the manufacturer and user. CAD product develop-ment still necessitates practical product testing, during 

its  development  phase  utilising  standardised 

proce-dures of: ‘calibration and laboratory test methods’ – to 

model the computerised-fluid data in a real-time cut-ting environment. 

8.6.1 Cutting Fluid – Quality Control

For practical reasons industrial cutting fluid manufac-turers  have  to  use  mass  produced  raw  materials  and 

chemicals, which may be less pure than those used in 

their  formulations  in  the  laboratory  (Fig.  205).  Not 

only are there variations in quality, owing to variance 

in the production process, but differences can also oc-  ‘Synergy’ ,  refers  to  the  outcome  when  substances  are 

com-bined and produce ‘side-effects’ , which add to, or even amplify 

each other, giving rise to a much stronger resultant effect. 

cur depending on the raw material source and the sea-sons  of  the  year.  In  order  to  ensure  constant  quality 

of  the  finished  product  despite  these  variations  and  the  factors  which  determine  the  quality  of  the  raw   materials, they must be checked prior to entering the  cutting  fluid  production  processing  stage.  The  labo-ratory-based  technique  of  computer-aided  statistical  process control that ensures: ‘preventative quality con-trol’ ,  will  enable  the  researcher  to  set  the  upper  and  lower quality levels for a particular raw material – un- der test. Thus, on the basis of these user-defined sta-tistically-acceptable levels, the correlation between the  analysis and the practical results can be determined.  Raw  materials  analysis  using  computer-aided  design 

in conjunction with sophisticated analysis equipment,  plays a vital role in any new cutting fluid development  process. 

An  important  criterion  for  the  quality  of  the  fi-nal  cutting  fluid  formulation  is  its  stability.  By  com- parison, synthetic cutting fluids produce fewer prob-lems than semi-synthetic and emulsion cutting fluids, 

in  their  development.  In  the  case  of  the  semi-syn- thetic and emulsion cutting fluids, not only must cool-ing  water  and  lubricatthetic and emulsion cutting fluids, not only must cool-ing  oil  be  brought  together  –  two naturally incompatible substances, they must also 

‘persuaded’  to  remain  mixed  together  under  widely  varying and extreme cutting and environmental con-ditions.  When  different  degrees  of  water  hardness,  varying  mix  ratios  and  a  diverse  range  of  impurities  occur, they will strongly influence the overall water-oil  system. The conventional way of stabilising such a sys-tem is to add plenty of emulsifiers. This action can lead 

to  excessive  foaming,  especially  if  the  water  is  soft,  which  in  itself  necessitates  adding  anti-foam  agents.  Anti–foam agents are an expensive alternative – par-ticularly  in  a  large  central-based  ‘Niagara’  reservoir-type  system  feeding  several  machine  tools  in  say,  an  FMC/S (Fig. 203a), which here, by ‘anti-foaming dop-ing’ in any event, will only work for a limited period 

of time. 

More  important  for  cutting  fluid  stability,  is  the  size  and  distribution  of  the  oil  droplets  in  the  water  phase  (i.e.  see  Fig  206-inset  photomicrograph).  It  is  the even distribution of the many oil droplets which  ensures that the oil-water system is stable. The growth 

of micro-organisms (Fig. 203b) affects the droplet size  and as a result, as these droplets spherically-increase in  size, the number and distribution of droplets decreases.  Thus,  an  oil-water  system  with  many  evenly-spaced  and small droplets, will be more stable than systems 

404 Chapter 8

Trang 5

Figure 205 Laboratory-based testing procedures on cutting fluid coolant products

.

Trang 6

where  there  are  bigger,  but  fewer  droplets  present. 

Both the size and distribution of these oil droplets has 

an important influence on the emulsion’s consequent 

foaming behaviour, which in turn, is strongly affected 

by the water hardness and any turbulence produced by 

the machine tool, or from a centralised coolant supply 

system (Fig. 203a). 

Product Testing

There are a number of possible tests for checking the  quality  of  a  cutting  fluid  and  those  most  commonly 

utilised are ‘stability tests’. Such tests measure not only  the  physical stability,  but  also  tests  for:  bacteriologi-cal stability – this latter term is sometimes known as 

Figure 206 The method used to check a soluble cutting fluid’s dilution, utilising a Refractometer [Courtesy of Rocol Ltd.]

.

406 Chapter 8

Trang 7

a biostability test; biostatic properties; or resistance to

bacteria growth.  Foaming behaviour:  a  slight 

ten-

dency to foam is important for some types of machin-ing  operations,  particularly  when  deep-hole  drilldency to foam is important for some types of machin-ing 

operations  are  undertaken  and  more  specifically,  in 

grinding  operations.  There  are  certain  cleaning 

sys-tems available, such as ‘full-jacket cyclones’

and ‘hydro-cyclones’ ,  which  promote  foam formation.  However, 

there  are  no  standard  techniques  for  the 

measure-ment  of  foam  formation  and  collapse,  although  the 

laboratory  circulating pump method, is  a  reasonable 

approximation of practical conditions. In this method, 

the cutting fluid is forced through a spray-head so that 

the resultant spray falls onto the surface of the liquid 

and the time taken for foam to form and then collapse, 

is  a  measured  –  giving  an  indication  of  foaming 

be-haviour. Adhesion tests are often undertaken, with low 

adhesion representing a tendency for the cutting fluid 

product  to  build-up layers of  deposit.  This  adhesion 

test is usually used for synthetic products and again, 

there is no recognised standard test method; although 

one  technique  used  to  soak  a  pile  of  washers  in  the 

cutting fluid for a certain time, then drying them out 

and  subsequently  testing  for  adhesion,  is  sometimes 

employed.  Compatibility tests for  cutting  fluids, 

with  particular  reference  to paints  and  elastomers  by 

visual inspection of painted sheet metal is often car-ried out. Acid/alkaline tests are often undertaken on 

the cutting fluid, as this affects both the machine tool 

and health of the setter/operator

Once a cutting fluid manufacturer has produced a 

new formulated product, which has been subject to a 

stringent  laboratory  testing  programme,  followed  by 

exhaustive  practical  trials  and  consequent  analyses, 

it is then made available, initially to their ‘prime cus-tomers’ – for an ‘alpha-trial’ testing programme after 

which, the cutting fluid is offered on the ‘open-market’ 

  ‘Bacteriological test methods’ , typical of this type of testing 

regime are the German Standards, denoted by DIN51367 and 

DIN513368, but similar test Standards are listed in most of the 

world’s technological countries.

  ‘Compatibility tests’ , specially-prepared painted sheet metal

is fully- immersed in the cutting fluid for a certain time, then 

visually inspected for paint de-lamination, etc., according to 

the German Standard: DIN53521.

  ‘Acid/alkaline tests’ , are important cutting fluid tests and they 

are normally measured under laboratory conditions with an 

electrochemical pH meter, in accordance to say, the German 

Standard DIN51369.

for customers world-wide. Therefore, it is vital that the 

correct cutting fluid is used in the machine tools, as it 

will have serious consequences to the: machine tool’s  subsequent  maintenance  programme;  likely  produc- tion output; machined workpiece quality and reliabil-ity; together with the various health issues relating to  that of the setter/operator. The following section has  been included to help with the important decisions re-lating to the choice of cutting fluid selection. 

8.7 Selecting the Correct

Cutting Fluid

When choosing a cutting fluid many factors have to be  considered, with the relative importance varying with  each individual circumstance. For the latter reason, it 

is not possible to offer general rules for the selection 

of a cutting fluid. Inevitably, a compromise is neces-sary, although a comprehension of the factors involved  makes  it  possible  to  achieve  the  best  choice,  under  given circumstances. So, when choosing a cutting fluid 

it should always be borne in mind that the machining  process  plays  an  important  role  in:  productivity  and  efficiency; operator health; safety; plus the quality of  work created. 

8.7.1 Factors Affecting Choice

Probably  the  main  factors  that  must  be  considered  when selecting a specific cutting fluid are not always  apparently  obvious,  but  some  questions  should  be  raised, which might include:

Business philosophy – what are the relative con-cerns  and  weightings  given  to  goals  such  as:  effi-ciency; quality-conciousness; market and economic  position; of the company?

Production programme – what is the scale of pro-duction, is it a: single item (i.e. one-off); a batch; or  mass production? Moreover, what machining pro-cesses are involved in the part’s production?

Hardware – what production plant and equipment 

is there available for the machining of the compo-nents? Are the machine tools supplied with cutting  fluid  individually,  or  delivered  from  a  centralised  system? Are particular cutting fluids recommended 

by the manufacturer of these machine tools?

Trang 8

Protection of people and the environment –  to 

what  extent  are  the  personnel  exposed  to  cutting 

fluids: before; during; and after use? Are there local 

constraints on fluid disposal? 

The above criteria concerning cutting fluid selection, 

can be sub-divided into two distinct groupings – com-mercial and production, as follows

Commercial Criteria

The commercial criteria determine the ‘weight’ to be 

given to various production decisions. For instance, if 

the time factor is more important than the cost factor, 

then higher cutting speeds will be used and so the de-

mand placed on the cutting fluid will be greater. If, dif-ferent materials and types of machining processes are 

involved in the production process, then a ‘universal’ 

cutting fluid might be a better choice than a number of 

different fluid products, even if the latter fluid compo-sitions individually produced a better performance. 

Production Criteria

In  either  one-off,  or  batch  production,  individual 

machines  tools  are  likely  to  have  their  own  separate 

cutting  fluid  supply,  however  in  a  mass  production 

environment, fluid centralised systems are the norm. 

The production criteria for the choice of cutting fluid 

includes the: type of machining process; cutting con-

ditions – workpiece material, cutting data, tool mate-rial, etc., together with the machine tool type and its 

configuration.  Thus,  on  the  basis  of  these 

produc-

tion-based decision criteria, an initial choice will nor-  ‘Machine tool configuration’ ,  take  for  example,  the  case  of 

an  ‘orthogonal’ *  machining  centre,  it  relates  to  whether  the 

machine has a horizontal, or vertical spindle orientation, with 

one, or multiple spindles present, having three, four, or mul-tiple  linear  and  rotary  axis  control  and  of  the  conventional, 

or high-speed machining (HSM) variety. Most machine tools 

today fall into the ‘orthogonal’ machining category, but some 

‘non-orthogonal’  machining  centres  exists,  which  offer 

con-tinuous kinematics that have multiple-axis control – for even 

simple straight-line motion, often available with omni-direc-tional spindle orientations – for ease of cutter access to say, a 

complex, or sculptured machine part geometry.

  *Orthogonality of axes means that each axis is positioned at 

90° with respect to each other, such as on a three-axis verti-cal machining centre (i.e. X-, Y- and Z-axes, with the Z-axis 

normally incorporating the machine’s spindle).

mally be made regarding the type of cutting fluid to 

be used – whether it is an aqueous-, or oil-based fluid  type that is required. 

8.7.2 Selection Procedure

When selecting a cutting fluid, it is important to take  the  fluid  manufacturer’s  instructions  into  consider-ation.  If  their  recommendations  are  ignored,  it  may  render  any  previous  guarantees  invalid.  Many  of  these cutting fluid manufacturers specify that certain  products be utilised, normally only applying them to  either special machining circumstances, or where dif-ficult cutting conditions are likely to be encountered.  Equally, other cutting fluid producers only specify the  general type of instructions, such as: what type of cut-ting fluid to employ, for example, aqueous, or not, to 

be used, on the contrary, some fluid manufacturers do  not specify anything! Usually it is possible to rely on  the manufacturer’s specification tables which indicate  their  most  suitable  product  for  a  particular  range  of 

machining  operations.  However,  before  consulting  a 

cutting fluid manufacturer’s set of tables, the follow-ing factors must be either known, or established. These 

crucial decisions include:

Type of machining operation – care must be taken 

to ensure that correct and efficient planning of the  machining  strategy  for  the  successful  completion 

of the part is known and, the optimum machining  techniques to achieve this objective are confirmed,

Water characteristics –  hard/soft,  chloride, 

sul-phate,  bicarbonate  content  has  been  both  tested  and accurately established,

Type of workpiece material to be machined – with 

due regard to machining of: work-hardening mater-ials, or ‘sticky’ materials – aluminium and copper  alloys, etc.,

Type of machine tool filtration system – having ei- ther: no filtration; sump only; paper filter; centri-fuge; etc. 

NB  In  the  case  of  the  centrifuge,  semi-synthetic

products are not

recommended, while washable fil- ters should only be utilised with synthetic, or semi-synthetic products

As a general ‘rule of thumb’ , emulsions with EP addi-tives should be employed for heavy cutting work, whilst  synthetic products are normally best when cutting at 

high speeds. By way of an illustration, if one consid-408 Chapter 8

Trang 9

ers  multiple  machining  operations  undertaken  on 

machining centres, the cutting fluid should be chosen 

for the range between the highest and lowest cutting 

speeds. Once a particular fluid product has been se-lected, it is still necessary to carry out a practical test 

as only after such testing, will it confirm if the correct 

choice was made. At this stage in the selection proce-dure and even at some point later, support from the 

cutting  tool  manufacturer  in  the  form  of:  systematic 

sampling procedures; laboratory testing and technical 

advice could prove very informative – particularly for 

applications where heavy cutting fluid consumption is 

anticipated. 

8.8 Care, Handling,

Control and Usage –

of Cutting Fluids

So that the properties of a cutting fluid can be main-tained giving it a long and reliable service life, correct: 

storage and handling; usage and mixing with labelling 

–  having  instructions  for  use;  and  care;  are  essential 

requirements. 

An  indispensable  part  of  any  overall  cutting  fluid 

control, is suitable handling and storage at the user’s 

premises,  as  it  provides  a  continuous  replenishment 

and service facility for the monitoring of fluids at, or 

near to the machine shop. All containers of cutting oil 

should always be clearly marked with their end usage

for use within the factory. When storing these cutting 

oils,  the  grade  most  frequently  utilised  are  best  kept 

on simple robust stillages, or for larger quantities, in 

covered tanks, with an adequate supply of: taps; hand-pumps;  funnels;  measures;  and  drip-trays;  to  ensure 

proper  handling  and  to  avoid  intermixing  of  grades. 

This potential fluid contamination is one of the most 

important  aspects  when  dealing  with  soluble  oils,  in 

order to obviate any emulsification troubles and pos-sible coolant separation issues. 

In  large  manufacturing  companies,  where  bulk 

delivery  of  cutting  fluids  are  being  made-up  prior 

to  delivery,  it  is  important  that  all  storage  tanks  for 

the  reception  are  properly  identified,  with 

appropri-ate markings immediately changed once a new grade 

is  adopted.  Unfortunately,  one  oil  looks  much  the 

same as any other and if not properly identified (i.e. 

marked-up), as to the grade identification and its end 

usage, this could lead to some costly machining mis-takes  (e.g.  part-scrappage  problems)  within  the  pro-duction machining facility. The reception of drums of  cutting  fluid  and  oils,  requires  certain  safeguards,  to  protect the mutual interests of both the supplier and  user alike. For instance, the supplier should be noti-fied at once if there is obvious drum damage, or the  odd drum is leaking. Full drums of fluid should never 

be just dropped-off the delivery vehicle from its plat-form, as a rim, or seam may be damaged and leakage 

of the contents could potentially be a problem, apart  from the real risk of personal injury of a heavy drum’s  unchecked motion! For example, a typical full drum  weighs about 200 kg and if dropped from the vehicle’s  loading  platform  –  normally  a  height  of  just  over  a   metre,  the  impact  force  will  be  considerably  greater  than its ‘dead weight’ – due to gravitational influence,  thus the uncontrolled careering drum is a major ac-cident  waiting  to  happen!  So,  when  unloading  full  drums from a road vehicle, always use: a drum skid;  hoist, or fork-lift truck

When the handling of cutting and lubricating oils  has developed into a filthy job, this is reflected in the  storage facility, which in some companies is the most  neglected part of the factory. Under such conditions, it 

is often difficult, if not impossible to avoid both wast-age and contamination of lubricants, thereby leading 

to issuing the wrong oil for the present machine tool’s  cutting requirements. Equally, a clean well-organised  oil storage facility is an invaluable asset to any engi-neering plant and no effort should be spared to create  and maintain these optimum conditions, this being es-sential to a trouble-free operation. 

If soluble cutting fluid – ‘coolant’ , is mixed in bulk,  the  storage  tank  should  be  clearly  marked  with  the:  product’s  name;  reference  code;  and  concentration.  This  simple  but  vital  tank  identification  avoids  mis- takes in issuing the wrong coolant, or dilution concen-tration to a prescribed machine tool, while providing a  reminder of the required contents when mixing a fresh  fluid batch. 

Soluble  oil  concentrate  must  not  be  exposed  to  cold climatic conditions and allowed to freeze, since  this  ‘cryogenic  effect’  might  adversely  affect  the 

  ‘Oil-drum skids’ , when robustly designed/produced, allow the 

controlled sliding to ground-level of full drums off a vehicle’s  loading platform, without potential health risks to the compa-ny’s work-force.

Trang 10

concentrate’s  stability  –  when  subsequently  used. 

Further, bulk drum storage outside should if possible, 

be under protective cover, but if this is not the case, 

then  drums  should  be  placed  onto  their  sides  and 

not stored upright (i.e. ‘bung-side up!’). If they were 

to  be  stored  upright,  then  any  standing  rain  water 

can collect on the drum’s top and owing to daily tem-perature fluctuations, any water can be sucked into the 

barrel – even through the unopened top. These small 

amounts  of  water  may  destabilise  the  concentrate, 

leading in the worst scenario to complete separation 

of  the  concentrate  into  distinct  layers.  In  this  state, 

the concentrate becomes completely unusable, as fluid 

in  such  a  condition,  will  be  unlikely  to  adequately 

remix.  Consequently,  it  is  advisable  that  some  form 

of space heating for undercover fluid storage is desir-able, to minimise wide temperature fluctuations, this 

being  particularly  relevant  during  winter  months,  as 

the  oil  viscosity  appreciably  changes  (i.e.  thickens), 

with more sluggish flow-rates causing delays in both 

its delivery and usage. When not in use, all lubricant 

containers should be kept closed, thus avoiding entry 

of  abrasive  foreign  matter.  So,  whenever  possible, 

indoor storage of cutting fluids and lubricants is to be 

recommended. 

As all oil storage facilities have a real potential for 

a catastrophic and explosive fire hazard. Sufficient fire 

extinguishers – of the correct type and size, should be 

strategically placed at easily-accessible points around 

the oil storage facility and positioned at ground level 

with  unobstructed  access  to  them.  Any  oily  paper 

waste and sawdust0 present, requires prompt disposal 

to minimise fire risk. Any oil storage facility is strictly a 

non-smoking zone, for obvious reasons. 

8.8.1 Product Mixing – Preparation of

a Aqueous-Based Cutting Fluids

As  mentioned,  cutting  fluids  are  usually  supplied  to 

the customer in the form of concentrates and the ease 

0  ‘Sawdust’ soaked in oil is a likely fire source, so rather than 

use this to soak up oil-spillages, use specially-produced gran-ules that are non-flammable and oil absorbent.

NB  These oil absorbent granules are usually readily available 

and  can  be  purchased  from  most  leading-lubricant  supply 

companies. 

with which they can be mixed together with water var-ies, depending upon the amount of oil they contain.  Concentrates with high oil concentration may require  vigorous stirring in order to form an emulsion. While  other products containing little oil are often supplied 

as ‘preformed emulsions’ , in which the concentrate has 

previously been mixed by the cutting fluid manufac- turer with water to form a stable emulsion. These lat-ter ‘preformed concentrates’ , only require them to be  stirred into water at the correct dilution ratio, in order 

to prepare them for use. 

Correct  preparation  of  the  emulsion  is  essential 

if the cutting fluid is to provide its optimum perfor-mance. By preference, the water supply should not be  excessively hard (i.e. <300 ppm – total hardness) and, 

it should be of ‘drinking quality’ – thereby not infected  with any bacteria. 

Hand Mixing

With the production need for relatively small volumes 

of aqueous-based coolants, the emulsion can be pre-pared as follows:

1.  Choose a suitable-sized volume mixing vessel – not  the machine sump, nor a galvanised container,

2.  Carefully fill with the measured amount of water,

3.  Slowly add a measured amount of concentrate while  continuously stirring – with a top-to-bottom stir-ring  action  –  this  being  the  most  efficient  action,  until the emulsion is fully-formed,

4.  Steadily add the newly-mixed emulsion to the ma-chine tool’s sump

Automatic Mixing

When  larger  volumes  of  emulsion  cutting  fluid  are  required,  then  it  is  advisable  to  use  a  purpose-built  and designed fluid mixer (Fig. 208). These proprietary  mixing devices incorporate the following features:

•  They can directly-connect to a standard water tap,

•  They can be screwed directly into a large fluid con-centrate drum,

•  There  is  adjustment  for  the  automatic  dispensing 

of the correct emulsion dilution ratio of: ‘oil-to-wa-ter’ , 

•  The fluid mixer incorporates a non-return valve, to  ensure that the emulsion cannot leak-back into the  drum’s contents

410 Chapter 8

Ngày đăng: 21/06/2014, 22:20

TỪ KHÓA LIÊN QUAN