Giải các bài tập liên quan cơ kết cấu: hệ giàn sử dụng phương pháp tách nút và mặt cắt, giải dầm 2 khớp, hệ siêu tĩnh theo phương pháp lực và phương pháp chuyển vị bằng tiếng anh và hướng dẫn khá chi tiết.
Trang 1MECHANICS OF STRUCTURES (CI3233)
Semester 231 - Class P01
ASSIGNMENT
Lecturer: NGUYỄN HỒNG ÂN
Student: Phạm Thị Thanh Tâm ID 2014439
DOB : 25/10/2002
Trang 21.1 Problem 1.1 31.2 Problem 1.5 8
2.1 Problem 2.1 132.2 Problem 2.5 16
3.1 Problem 3.4 193.2 Problem 3.6 24
4.1 Problem 4.2 294.2 Problem 4.5 32
Trang 3a Determine the normal forces of bars.
b Draw the normal force diagram
SolutionGive the nodes some indices
Trang 4 Calculation of Reaction Forces
As the structure is statically determinate, the reaction forces can be calculated with the
3 Equilibrium equations
In our case, we are calculating the support forces HA, VA, and VC
X
H = 0 : HA= −4PX
M/A= 0 : 2a × VC = a3P +
√3
Trang 53 P (compression)Horizontal Equilibrium:
X
H = 0 : N1+ N4× cos 60◦ = 4P
⇒ N1 = 4P − 6 − 10
√3
3 × P × cos 60◦
⇒ N1 = 4P − 9 + 5
√3
3 × P (tension)Node C
3 P (compression)
Trang 63 P × cos 60
◦
⇒ N2 = 3 + 4
√3
3 P (tension)Section 1-1 (On the left side)
4P 4P
√3 2a
X
H = 0 : N3+ N5× cos 60◦+ 4P − 4P + 9 + 5
√3
3 P = 0
⇒ N3 = −N5× cos 60◦− 9 + 5
√3
⇒ N3 = (−2 − 2√
3)P (compression)
Trang 7Node D
2P D
3 P (tension)
a The normal force of bars
N1 = 4P − 9 + 5
√3
3 P (tension)
N2 = 3 + 4
√3
3 P (tension)
N7 = −6 + 8
√3
3 P (compression)
Trang 8b Plot the normal force diagram
Normal force diagram
Trang 9Data λ1 λ2 λ3 λ4 λ5
Requirements:
a Determine the normal forces of bars
b Draw the normal force diagram
SolutionGive the nodes and the bars some indices
Calculation of the internal forces
Node E
Trang 10H = 0 : N3+ N4 × sin 45◦ = 0
⇒ N3 = −5√
2P × sin 45◦ = −5P (compression)
Trang 11Section 1-1 (On the left side)
N2
N3
N645°
Trang 12b Plot the normal force diagram
Normal force diagram
7√2)P5√2)P
5P
8P
P
10P
Trang 13a Determine the reaction forces.
b Draw the shear force and bending moment diagrams
SolutionGive the nodes some indices
Trang 14Free body diagram :
Analysis of complementary structure
X
H = 0 : HC = 0X
M/C = 0 : 2L × VD = qL2 ⇒ VD = 1
2qLX
Trang 1527qL 4
Trang 16a Determine the reaction forces.
b Draw the shear force and bending moment diagrams
SolutionGive the nodes some indices
Trang 17Free body diagram :
Analysis of complementary structure
Trang 18H = 0 : HA= 0X
V = 0 : VA+ 7
2qL = 5qL ⇒ VA =
3
2qLX
B
C 2L L
3
2qL
3
2qL7
M
Trang 19A frame is subjected to loads as shown in above figure Using the force method:
a Determine the reaction forces of supports
b Draw the M, V, N of the frame
c Determine the vertical displacement of the point where the force P is applied
Solution
Degree of indetermeinacy: DI = 1
The normal equation is :
δ11+ X1+ ∆1P = 0
Trang 20 Select the released structure :
P=5qL
C
qEI
M/B = 0 : 2L × VA= L × 5qL + 3qL2+ L × 2qL ⇒ VA = 5qLX
V = 0 : VB = VA+ 5qL = 5qL + 5qL = 10qL
Calculation of primary beam subjected to X1 = 1 :
X
H = 0 : HB = 1X
M/B = 0 : 2L × VA= 2L × 1 ⇒ VA= 1X
V = 0 : VB = VA= 1
The bending moment diagram for primary beam due to external load and
X1 = 1 is shown in below:
Trang 21q EI
10qL28qL2
3qL22qL2
50qL43EI = 0
→ X1 = −25
8 qL
Trang 22a Calculation of Reaction Forces:
M/B = 0 : 2L × VA = 3ql2+ 5qL2+ 2qL × L −25
8 qL × 2L ⇒ VA=
15
8 qLX
q EI
EI
EI A
qL 55 8
4
25qL
8
25qL 8
qL 55 8
qL 55 8
Trang 23c Calculation of the vertical displacement of the point where the force P isapplied:
Calculation of Reaction forces due to PK = 1 as follows:
X
H = 0 : HB = 0X
M/B = 0 : 2L × VA= L ⇒ VA= 1
2X
V = 0 : VB = VA+ 1 = 1
2+ 1 =
32Plot the bending moment due to PK = 1 and external load is shown in below:
qL558
B
D PK=11
2
32
"m"
L
Trang 24Using the graph multiplication method:
A frame is subjected to loads as shown in above figure Using the force method:
a Determine the reaction forces of supports
b Draw the M, V, N of the frame
c Determine the vertical displacement of the point where the force P is applied
Solution
Degree of indetermeinacy: DI = 1
The normal equation is :
δ11+ X1+ ∆1P = 0
Trang 25 Select the released structure :
P=qL M=2qL2
M/A = 0 : L × HB = 2qL2+ 4L × qL − qL × 1
2L ⇒ HB =
11
2qLX
M/A= 0 : L × HB = 1 ⇒ HB = 1
LX
H = 0 : HA= HB = 1
L
The bending moment diagram for primary beam due to external load and
X1 = 1 is shown in below:
Trang 26P=qL M=2qL2
VA= 0
HA= 1
L
HB=1L
2qL24qL2
2qL26qL2
8
qL2
1
1 1
H = 0 : HA= HB+ qL → HA= 269
56qL
Trang 27b Plot the M, V, N of the frame below:
P=qL M=2qL2
95qL 2
56
2qL24qL2
8
qL2
V
M N
qL 213 56
269qL56
95qL 2
56 241qL2
56 17qL 2
56
269qL
56
269qL56
c Calculation of the vertical displacement of the point where the force P isapplied:
Calculation of Reaction forces due to PK = 1 as follows:
X
V = 0 : VA= 1X
M/A= 0 : L × HB = 4L × 1 ⇒ HB = 4X
H = 0 : HA= HB = 4Plot the bending moment due to PK = 1 and external load is shown in below:
Trang 28P=qL M=2qL 2 C
95qL 2
56
2qL24qL2
Trang 30 Select the Kinematically Determinate Structure:
q
P=3qL M=4qL2
q
P=3qL M=4qL2
8EI 3L
8EI L
4EI L
Trang 31 Determination of Coefficients by using equilibrium equations:
Trang 344EI L
4EI L
2EI L
3EI 2L
Trang 35 Shear force and bending moment diagram of Kinematically IndeterminateStructure: With M = M1Z1+ Mo
Trang 3611qL 54