As applications, we get some inverse forms of Pachpatte’s inequalities which were established in 1998.. In particular, Pachpatte11 proved some inequalities similar to Hilbert’s integral
Trang 1Volume 2010, Article ID 820857, 7 pages
doi:10.1155/2010/820857
Research Article
On Hilbert-Pachpatte Multiple
Integral Inequalities
1 Department of Mathematics, College of Science, China Jiliang University,
Hangzhou 310018, China
2 Department of Mathematics, The University of Hong Kong, Pokfulam Road,
Hong Kong, China
Received 11 March 2010; Revised 16 July 2010; Accepted 28 July 2010
Academic Editor: N Govil
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
We establish some multiple integral Hilbert-Pachpatte-type inequalities As applications, we get some inverse forms of Pachpatte’s inequalities which were established in 1998
1 Introduction
In 1934, Hilbert1 established the following well-known integral inequality
If f ∈ L p 0, ∞, g ∈ L p 0, ∞, f, g ≥ 0, p > 1 and 1/p 1/q 1, then
∞
0
∞
0
f xgx
π
sin
∞
0
f p xdx
1/p∞
0
g q xdx
1/q
, 1.1
where π/ sinπ/p is the best value.
In recent years, considerable attention has been given to various extensions and improvements of the Hilbert inequality form different viewpoints 2 10 In particular, Pachpatte11 proved some inequalities similar to Hilbert’s integral inequalities in 1998 In this paper, we establish some new multiple integral Hilbert-Pachpatte-type inequalities
Trang 22 Main Results
Theorem 2.1 Let h i ≥ 1, let fiσi ∈ C1xi , 0 , 0, ∞, i 1, , n, where xi are positive real numbers, and define F isi 0
s i f iσidσi , for s i ∈ xi , 0 Then for 1/αi 1/βi 1, 0 < βi < 1 and
n
i11/αi 1/α,
0
x1
· · ·
0
x n
n
i1F h i
i si
i11/αi−si1/α ds1· · · dsn≥ n
i1
−xi 1/α i h i
0
x i
si −xiF h i−1
i sifisi β i
ds i
1/β i
.
2.1
easy to observe that
n
i1
F h i
i si n
i1
h i
0
s i
F h i−1
i σifiσidσi
≥ n
i1
h i−si 1/α i
0
s i
F h i−1
i σifiσi β i dσ i
1/β i
, s i ∈ xi , 0 , i 1, , n.
2.2
Let us note the following means inequality:
n
i1
m 1/α i
α
n
i1
1
α i m i
1/α
We obtain that
n
i1F h i
i si
i11/αi−si1/α ≥ n
i1
h i
0
s i
F h i−1
i σifiσi β i
dσ i
1/β i
Integrating both sides of2.4 over si from xi i 1, 2, , n to 0 and using the special case
of inverse H ¨older integral inequality, we observe that
0
x1
· · ·
0
x n
n
i1F h i
i si
i11/αi−si1/α ds1· · · dsn
≥ n
i1
h i
0
x i
0
s i
F h i−1
i σifiσi β i
dσ i
1/β i
ds i
≥ n
i1
h i−xi 1/α i
0
x i
0
s i
F h i−1
i σifiσi β i dσ i
ds i
1/β i
n
i1
−xi 1/α i h i
0
x i
si − xiF h i−1
i sifisi β i
ds i
1/β i
.
2.5
The proof is complete
Trang 3Remark 2.2 Taking n 2, βi 1/2 to 2.1, 2.1 changes to
0
x1
0
x2
F h1
1 s1F h2
2 s2
s1 s2−2 ds1ds2
≥ 4h1h2x1x2−10
x1
s1− x1F h1 −1
1 s1f1s1 1/2 ds1
2
×
0
x2
s2− x2F h2 −1
2 s2f2s2 1/2 ds2
2
.
2.6
This is just an inverse inequality similar to the following inequality which was proved by Pachpatte11:
x
0
y
0
F h sG l t
1
2hl
xy1/2x
0
x − sF h−1sfs 2ds
1/2
×
y
0
y − tG l−1tgt 2dt
1/2
.
2.7
Theorem 2.3 Let f iσi, Fisi, αi , and β i be as in Theorem 2.1 Let p iσi be n positive functions
defined for σ i ∈ xi , 0 i 1, 2, , n, and define Pisi 0
s i p iσidσi , where x i are positive real numbers Let φ i i 1, 2, , n be n real-valued nonnegative, concave, and super-multiplicative
functions defined on R Then
0
x1
· · ·
0
x n
n
i1φ iFisi
i11/αi−si1/α ds1· · · dsn
≥ Lx1, , x n n
i1
0
x i
si − xi
p isiφi
f isi
p isi
βi
ds i
1/β i
,
2.8
where
L x1, , x n n
i1
0
x
φ iPisi
P isi
αi
ds i
1/α i
Trang 4Proof By using Jensen integral inequalitysee 11 and inverse H¨older integral inequality
see 12 and noticing that φi i 1, 2, , n are n real-valued super-multiplicative
functions, it is easy to observe that
φ iFisi φi
⎛
⎝P isi
0
s i p iσif iσi/piσidσ i
0
s i p iσidσi
⎞
⎠
≥ φiPisiφi
⎛
⎝
0
s i p iσif iσi/piσidσ i
0
s i p iσidσi
⎞
⎠
≥ φ iPisi
P isi
0
s i
p iσiφi
f iσi
p iσi
dσ i
≥
φ iPisi
P isi
−si 1/α i
0
s i
p iσiφi
f iσi
p iσi
βi
dσ i
1/β i
.
2.10
In view of the means inequality and integrating two sides of 2.10 over si from x i i
1, 2, , n to 0 and noticing H¨older integral inequality, we observe that
0
x1
· · ·
0
x n
n
i1φ iFisi
i11/αi−si1/α ds1· · · dsn
≥ n
i1
0
x i
φ iPisi
P isi
0
s i
p iσiφi
f iσi
p iσi
βi
dσ i
1/β i
ds i
≥ n
i1
0
x i
φ iPisi
P isi
αi
ds i
1/α i0
x i
0
s i
p iσiφi
f iσi
p iσi
βi
dσ i ds i
1/β i
Lx1, , x n n
i1
0
x i
si − xi
p isiφi
f isi
p isi
βi
ds i
1/β i
.
2.11
This completes the proof ofTheorem 2.3
Remark 2.4 Taking n 2, βi 1/2 to 2.8, 2.8 changes to
0
x1
0
x2
φ1F1s1φ2F2s2
s1 s2−2 ds1ds2
≥ Lx1, x2
⎛
⎝0
x1
s1− x1
p1s1φ1
f
1s1
p1s1
1/2
ds1
⎞
⎠
2
×
0
x
s2− x2
p2s2φ2
f
2s2
p2s2
1/2
ds2
2
,
2.12
Trang 5L x1, x2 4
0
x1
φ
1P1s1
P1s1
−1
ds1
−10
x2
φ
2P2s2
P2s2
−1
ds2
−1
This is just an inverse inequality similar to the following inequality which was proved by Pachpatte11:
x
0
y
0
φ FsψGt
x, yx
0
x − s
p sφ
f s
p s
2
ds
1/2
×
y
0
y − tq tψ
g t
q t
2
dt
1/2
,
2.14
where
L
x, y
1 2
x
0
φ Ps
P s
2
ds
1/2y
0
ψ Qt
Q t
2
dt
1/2
Theorem 2.5 Let f iσi, piσi, Piσi, αi , and β i be as Theorem 2.3 , and define F isi
1/Pisi0
s i p iσifiσidσi for σ i , s i ∈ xi , 0 , where xi are positive real numbers Let φ i i
1, 2, , n be n real-valued, nonnegative, and concave functions on R Then
0
x1
· · ·
0
x n
n
i1P isiφiFisi
αn
i11/αi−si1/α ds1· · · dsn
≥ n
i1
x 1/α i
i
0
x i
si − xip isiφifisiβ i
ds i
1/β i
.
2.16
Proof From the hypotheses and by using Jensen integral inequality and the inverse H ¨older
integral inequality, we have
φ iFisi φi
1
P isi
0
s i
p iσifiσidσi
≥ 1
P isi
0
s i
p iσiφif iσidσ i
≥ 1
P isi −si 1/α i
0
s
p iσiφif iσiβ i dσ i
1/β i
.
2.17
Trang 60
x1
· · ·
0
x n
n
i1P isiφiFisi
i11/αi−si1/α ds1· · · dsn
≥ n
i1
0
x i
0
s i
p iσiφifiσiβ i dσ i
1/β i
ds i
≥ n
i1
x 1/α i
i
0
x i
0
s i
p iσiφifiσiβ i
dσ i ds i
1/β i
n
i1
−xi 1/α i
0
x i
si − xip isiφifisiβi ds i
1/β i
.
2.18
Remark 2.6 Taking n 2, βi 1/2 to 2.16, 2.16 changes to
0
x1
0
x2
P1s1P2s2φ1F1s1φ2F2s2
s1 s2−2 ds1ds2
≥ 4x1x2−1
0
x1
s1− x1p1s1φ1
f1s11/2
ds1
2
×
0
x2
s2− x2p2s2φ2
f2s21/2
ds2
2
.
2.19
This is just an inverse inequality similar to the following inequality which was proved by Pachpatte11:
x
0
y
0
P sQtφFsψGt
≤ 1
2
xy1/2x
0
x − sp sφf s2ds
1/2y
0
y − tq tψg t2dt
1/2
.
2.20
Remark 2.7 In 2.20, if p1s1 p2s2 1, then P1s1 s1, P2s2 s2 Therefore2.20 changes to
0
x1
0
x2
φ1F1s1φ2F2s2
s1 s2−2 ds1ds2
≥ 4x1x2−1
0
x1
s1− x1φ1
f1s11/2
ds1
20
x2
s2− x2φ2
f2s21/2
ds2
2
.
2.21
Trang 7This is just an inverse inequality similar to the following Inequality which was proved by Pachpatte11:
x
0
y
0
φ FsψGt
st−1s t ds dt
≤ 1
2
xy1/2x
0
x − sφ
f s2
ds
1/2y
0
y − tψ
g t2
dt
1/2
.
2.22
Acknowledgments
This paper is supported by the National Natural Sciences Foundation of China10971205 This paper is partially supported by the Research Grants Council of the Hong Kong SAR, ChinaProject no HKU7016/07P and an HKU Seed Grant for Basic Research
References
1 G H Hardy, J E Littlewood, and G P´olya, Inequalities, Cambridge University Press, Cambridge,
Mass, USA, 1952
2 B Yang, “On a relation between Hilbert’s inequality and a Hilbert-type inequality,” Applied
Mathematics Letters, vol 21, no 5, pp 483–488, 2008.
3 G A Anastassiou, “Hilbert-Pachpatte type general multivariate integral inequalities,” International
Journal of Applied Mathematics, vol 20, no 4, pp 549–573, 2007.
4 B C Yang, “Hilbert’s inequality with some parameters,” Acta Mathematica Sinica, vol 49, no 5, pp.
1121–1126, 2006
5 J C Kuang and L Debnath, “The general form of Hilbert’s inequality and its converses,” Analysis
Mathematica, vol 31, no 3, pp 163–173, 2005.
6 C.-J Zhao and W.-S Cheung, “Sharp integral inequalities involving high-order partial derivatives,”
Journal of Inequalities and Applications, vol 2008, Article ID 571417, 10 pages, 2008.
7 Z Changjian, J Pecari´c, and L Gangsong, “Inverses of some new inequalities similar to Hilbert’s
inequalities,” Taiwanese Journal of Mathematics, vol 10, no 3, pp 699–712, 2006.
8 B Yang, “On new generalizations of Hilbert’s inequality,” Journal of Mathematical Analysis and
Applications, vol 248, no 1, pp 29–40, 2000.
9 J C Kuang, “On new extensions of Hilbert’s integral inequality,” Journal of Mathematical Analysis and
Applications, vol 235, no 2, pp 608–614, 1999.
10 M Gao and B Yang, “On the extended Hilbert’s inequality,” Proceedings of the American Mathematical
Society, vol 126, no 3, pp 751–759, 1998.
11 B G Pachpatte, “On some new inequalities similar to Hilbert’s inequality,” Journal of Mathematical
Analysis and Applications, vol 226, no 1, pp 166–179, 1998.
12 E F Beckenbach and R Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, N.
F., Bd 30, Springer, Berlin, Germany, 1961
... Trang 4Proof By using Jensen integral inequalitysee 11 and inverse Hăolder integral inequality
see...
2.5
The proof is complete
Trang 3Remark 2.2 Taking n 2, βi 1/2 to 2.1, 2.1...
2
,
2.12
Trang 5L x1, x2