Volume 2008, Article ID 693248, 6 pagesdoi:10.1155/2008/693248 Research Article On Inverse Hilbert-Type Inequalities Zhao Changjian 1 and Wing-Sum Cheung 2 1 Department of Information an
Trang 1Volume 2008, Article ID 693248, 6 pages
doi:10.1155/2008/693248
Research Article
On Inverse Hilbert-Type Inequalities
Zhao Changjian 1 and Wing-Sum Cheung 2
1 Department of Information and Mathematics Sciences, College of Science, China Jiliang University, Hangzhou 310018, China
2 Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong
Correspondence should be addressed to Zhao Changjian, chjzhao@163.com
Received 14 November 2007; Revised 1 December 2007; Accepted 4 December 2007
Recommended by Martin J Bohner
This paper deals with new inverse-type Hilbert inequalities Our results in special cases yield some
of the recent results and provide some new estimates on such types of inequalities.
Copyright q 2008 Z Changjian and W.-S Cheung This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1 Introduction
Considerable attention has been given to Hilbert inequalities and Hilbert-type inequalities and their various generalizations by several authors including Handley et al.1, Minzhe and Bicheng2, Minzhe 3, Hu 4, Jichang 5, Bicheng 6, and Zhao 7,8 In 1998, Pachpatte
9 gave some new integral inequalities similar to Hilbert inequality see 10, page 226 In
2000, Zhao and Debnath11 established some inverse-type inequalities of the above integral inequalities This paper deals with some new inverse-type Hilbert inequalities which provide some new estimates on such types of inequalities
2 Main results
Theorem 2.1 Let 0 < p i ≤ 1 i 1, , n and r ≤ 0 Let {a i,m i } be n positive sequences of real numbers defined for m i 1, 2, , k i , where k i i 1, , n are natural numbers, define A i,m i
m i
s i1a i,s i , and define A i,0 0 Then for p−1 q−1 1, p < 0 or 0 < p < 1, one has
k1
m1 1
· · · k n
m n1
n
i1A p i
i,m i
1/nn
i1m r in/ pr ≥
n
i1
p i k 1/p i
k
i
m i1
k i − m i 1a i,m i A p i−1
i,m i
q
1/q
. 2.1
Trang 2Proof By using the following inequalitysee 10, page 39:
h i a h i−1
i,m i
a i,m i − b i,m i
≤ a h i
i,m i − b h i
i,m i ≤ h i b h i−1
i,m i
a i,m i − b i,m i
where a i,m i > 0, b i,m i > 0, and 0 ≤ h i ≤ 1 i 1, 2, , n, we obtain that
A p i
i,m i1− A p i
i,m i ≥ p i A p i−1
i,m i1
A i,m i1− A i,m i
p i a i,m i1A p i−1
i,m i1,
ki−1
m i0
A p i
i,m i1− A p i
i,m i A p i
i,k i≥ ki−1
m i0
p i a i,m i1A p i−1
i,m i1 p i
k i
m i1
a i,m i A p i−1
i,m i ,
2.3
thus
A p i
i,m i ≥ p i
m i
s i1
a i,s i A p i−1
From inequality2.4 and in view of the following mean inequality and inverse H¨older’s in-equality10, page 24, we have
n
i1
m 1/n i ≥
1
n
n
i1
m r i
1/r
n
i1A p i
i,m i
1/nn
i1m r in/ pr ≥
n
i1
p i
m
i
s i1
a i,s i A p i−1
i,s i
q
1/q
Taking the sum of both sides of2.6 over m i from 1 to k i 1, 2, , n first and then using again
inverse H ¨older’s inequality, we obtain that
k1
m1 1
· · · k n
m n1
n
i1A p i
i,m i
1/nn
i1m r in/ pr ≥
n
i1
p i
k
i
m i1
m
i
s i1
a i,s i A p i−1
i,s i
q 1/q
≥n
i1
p i k 1/p i
k
i
m i1
m i
s i1
a i,s i A p i−1
i,s i
q 1/q
n
i1
p i k 1/p i
k
i
s i1
k i − s i 1a i,s i A p i−1
i,s i
q 1/q
n
i1
p i k 1/p i
k
i
m i1
k i − m i 1a i,m i A p i−1
i,m i
q
1/q
.
2.7
This completes the proof
Remark 2.2 Taking n 2, q −2, r −1 to 2.1, 2.1 becomes
k1
m1 1
k2
m2 1
A p1
1,m1A p2
2,m2
m−11 m−1
2
−3 ≥ 8p1p2
k1k2
3/2
k
1
m1 1
k1− m1 1a 1,m1A p1 −1
1,m1
−2 −1/2
×
k
2
m1
k2− m2 1a 2,m2A p2 −1
2,m2
−2 −1/2
.
2.8
Trang 3This is just an inverse form of the following inequality which was proven by Pachpatte
9:
k
m1
r
n1
A p m B q n
m n ≤
1
2pqkr 1/2
k
m1
k − m 1a m A p m−12 1/2r
n1
r − n 1b n B n q−12 1/2
.
2.9
Theorem 2.3 Let {a i,m i }, A i,m i , k i , p, and q be as defined in Theorem 2.1 Let {p i,m i } be n positive sequences for m i 1, 2, , k i i 1, 2, , n Set P i,m i m i
s i1p i,s i i 1, 2, , n Let φ i i
1, 2, , n be n real-valued nonnegative, concave, and supermultiplicative functions defined on R
0, ∞ Then,
k1
m1 1
· · ·k n
m n1
n
i1φ i
A i,m i
1/nn
i1m r in/ pr ≥Mk1, k2, , k nn
i1
k
i
m i1
k i − m i 1 p i,m i φ i a i,m i
p i,m i
q 1/q
,
2.10
where
M
k1, k2, , k n
n
i1
k
i
m i1
φ i
P i,m i
P i,m i
p 1/p
Proof From the hypotheses and by Jensen’s inequality, the means inequality, and inverse
H ¨older’s inequality, we obtain that
n
i1
φ i
A i,m i
n
i1
φ i
P i,m i
m i
s i1p i,s i
a i,s i /p i,s i
m i
s i1p i,s i
≥n
i1
φ i
P i,m i
φ i
m i
s i1p i,s i
a i,s i /p i,s i
m i
s i1p i,s i
≥n
i1
φ i
P i,m i
P i,m i
m i
s i1
p i,s i φ i
a i,s i
p i,s i
≥n
i1
φ i
P i,m i
P i,m i
m 1/p i
m
i
s i1
p i,s i φ i
a i,s i
p i,s i
q 1/q
≥
1
n
n
i1
m r i
n/ pr n
i1
φ i P i,m i
P i,m i
m
i
s i1
p i,s i φ i a i,s i
p i,s i
q 1/q
.
2.12 Dividing both sides of 2.12 by 1/nn
i1m r
in/ pr and then taking the sum over m i i
1, 2, , n from 1 to k iand in view of inverse H¨older’s inequality, we have
k1
m1 1
· · · k n
m n1
n
i1φ i
A i,m i
1/nn
i1m r in/ pr ≥n
i1
k
i
m i1
φ i
P i,m i
P i,m i
m
i
s i1
p i,s i φ i a i,s i
p i,s i
q 1/q
≥n
i1
k
i
m i1
φ i
P i,m i
P i,m i
p 1/p k
i
m i1
m i
s i1
p i,s i φ i
a i,s i
p i,s i
q 1/q
Mk1, k2, , k n
n
i1
k
i
m i1
m i
s i1
p i,s i φ i
a i,s i
p i,s i
q 1/q
Mk1, k2, , k n
n
i1
k
i
m i1
k i −m i1 p i,m i φ i
a i,m i
p i,m i
q 1/q
.
2.13 The proof is complete
Trang 4Remark 2.4 Taking n 2, q −2, r −1 to 2.10, 2.10 becomes
k1
m1 1
k2
m2 1
φ1
A 1,m1
φ2
A 2,m2
m−11 m−1
2
−3 ≥ Mk1, k2
k1
m1 1
k1− m1 1 p 1,m1φ1
a 1,m1
p 1,m1
−2 −1/2
×
k
2
m2 1
k2− m2 1 p 2,m2φ2
a 2,m2
p 2,m2
−2 −1/2
,
2.14
where
M
k1, k2
8
k
1
m1 1
φ1
P 1,m1
P 1,m1
2/3 3/2 k
2
m2 1
φ2
P 2,m2
P 2,m2
2/3 3/2
This is just an inverse of the following inequality which was proven by Pachpatte9:
k
m1
r
n1
φ
A m
ψ
B n
m n ≤ Mk, r
k
m1
k − m 1 p m φ a m
p m
2 1/2
×
r
n1
r − n 1 q n ψ b n
q n
2 1/2
,
2.16
where
Mk, r 1
2
k
m1
φ
P m
P m
2 1/2r
n1
ψ
Q n
Q n
2 1/2
Similarly, the following theorem also can be established
Theorem 2.5 Let P i,m i , {a i,m i }, {p i,m i }, k i , p, and q be as in Theorem 2.3 and define A i,m i
1/P i,m im i
s i1p i,s i a i,s i , for m i 1, 2, , k i Let φ i i 1, 2, , n be n real-valued, nonnegative, and concave functions defined on R.Then,
k1
m1 1
· · · k n
m n1
n
i1P i,m i φ i
A i,m i
1/nn
i1m r i
n/ pr ≥
n
i1
k i 1/p
k
i
m i1
k i − m i 1p i,m i φ i
a i,m i
q
1/q
. 2.18
The proof ofTheorem 2.5can be completed by following the same steps as in the proof
ofTheorem 2.3with suitable changes Here, we omit the details
Remark 2.6 Taking n 2, q −2, r −1 to 2.18, 2.18 becomes
k1
m1 1
k2
m2 1
P 1,m1P 2,m2φ1
A 1,m1
φ2
A 2,m2
m−11 m−1
2
−3
≥ 8k1k2
3/2k1
m1 1
k1−m11p 1,m1φ1
a 1,m1
−2 −1/2k2
m2 1
k2−m21p 2,m2φ2
a 2,m2
−2 −1/2
.
2.19
Trang 5This is just an inverse of the following inequality which was proven by Pachpatte9:
k
m1
r
n1
P m Q n φ
A m
ψ
B n
m n
≤ 1
2kr 1/2
k
m1
k − m 1p m φ
a m
2
1/2r
n1
r − n 1q n ψ
b n
2
1/2
.
2.20
Remark 2.7 In view of L’H ˆopital law, we have the following fact:
lim
r→0
1
n
n
i1
m r i
n/ pr
exp n
plimr→0
ln
1/nn
i1m r i
r
exp n
plimr→0
n
i1m r i ln m i
n
i1m r i
m1·m2· · · · ·m n
1/p
.
2.21
Accordingly, in the special case when n 2, p 0.1, and p i,m i 1, let r → 0, then the
inequality2.18 reduces to the following inequality:
k1
m1 1
k2
m2 1
φ1
A 1,m1
φ2
A 2,m2
m1m2
−2
≥k1k2
−1k1
m1 1
k1− m11φ1
a 1,m1
1/2 2k2
m2 1
k2−m21φ2
a 2,m2
1/2 2
.
2.22
This is just a discrete form of the following inequality which was proven by Zhao and Debnath
11:
x
0
y
0
φ
F sψ
Gt
st−2 ds dt ≥ xy
−1 x 0
x − sφ
fs1/2
ds
2 y
0
y − tφ
gt1/2
dt
2
.
2.23
Acknowledgments
The authors cordially thank the anonymous referee for his/her valuable comments which lead
to the improvement of this paper Research is supported by Zhejiang Provincial Natural Science Foundation of China, Grant no Y605065, Foundation of the Education Department of Zhejiang Province of China, Grant no 20050392, partially supported by the Research Grants Council of the Hong Kong SAR, China, Project no HKU7016/07P
References
1 G D Handley, J J Koliha, and J E Peˇcari´c, “New Hilbert-Pachpatte type integral inequalities,” Journal
of Mathematical Analysis and Applications, vol 257, no 1, pp 238–250, 2001.
2 G Minzhe and Y Bicheng, “On the extended Hilbert’s inequality,” Proceedings of the American
Mathe-matical Society, vol 126, no 3, pp 751–759, 1998.
Trang 63 G Minzhe, “On Hilbert’s inequality and its applications,” Journal of Mathematical Analysis and
Applica-tions, vol 212, no 1, pp 316–323, 1997.
4 K Hu, “On Hilbert inequality and its application,” Advances in Mathematics, vol 22, no 2, pp 160–163,
1993.
5 K Jichang, “On new extensions of Hilbert’s integral inequality,” Journal of Mathematical Analysis and
Applications, vol 235, no 2, pp 608–614, 1999.
6 Y Bicheng, “On new generalizations of Hilbert’s inequality,” Journal of Mathematical Analysis and
Ap-plications, vol 248, no 1, pp 29–40, 2000.
7 C.-J Zhao, “Inverses of disperse and continuous Pachpatte’s inequalities,” Acta Mathematica Sinica,
vol 46, no 6, pp 1111–1116, 2003.
8 C.-J Zhao, “Generalization on two new Hilbert type inequalities,” Journal of Mathematics, vol 20, no 4,
pp 413–416, 2000.
9 B G Pachpatte, “On some new inequalities similar to Hilbert’s inequality,” Journal of Mathematical
Analysis and Applications, vol 226, no 1, pp 166–179, 1998.
10 G H Hardy, J E Littlewood, and G P´olya, Inequalities, Cambridge University Press, Cambridge, UK,
2nd edition, 1934.
11 C.-J Zhao and L Debnath, “Some new inverse type Hilbert integral inequalities,” Journal of
Mathemat-ical Analysis and Applications, vol 262, no 1, pp 411–418, 2001.
... class="text_page_counter">Trang 63 G Minzhe, ? ?On Hilbert’s inequality and its applications,” Journal of Mathematical Analysis and. .. C.-J Zhao, “Inverses of disperse and continuous Pachpatte’s inequalities, ” Acta Mathematica Sinica,
vol 46, no 6, pp 1111–1116, 2003.
8 C.-J Zhao, ... edition, 1934.
11 C.-J Zhao and L Debnath, “Some new inverse type Hilbert integral inequalities, ” Journal of
Mathemat-ical Analysis and