Volume 2007, Article ID 38347, 15 pagesdoi:10.1155/2007/38347 Research Article On Opial-Type Integral Inequalities Wing-Sum Cheung and Chang-Jian Zhao Received 22 January 2007; Accepted
Trang 1Volume 2007, Article ID 38347, 15 pages
doi:10.1155/2007/38347
Research Article
On Opial-Type Integral Inequalities
Wing-Sum Cheung and Chang-Jian Zhao
Received 22 January 2007; Accepted 4 April 2007
Recommended by Peter Yu Hin Pang
We establish some new Opial-type inequalities involving functions of two and many in-dependent variables Our results in special cases yield some of the recent results on Opial’s inequality and also provide new estimates on inequalities of this type
Copyright © 2007 W.-S Cheung and C.-J Zhao This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, dis-tribution, and reproduction in any medium, provided the original work is properly cited
1 Introduction
In the year 1960, Opial [1] established the following integral inequality
Theorem 1.1 Suppose f ∈ C1[0,h] satisfies f (0) = f (h) = 0 and f (x) > 0 for all x ∈
(0,h) Then the integral inequality holds
h 0
f (x) f (x)dx ≤ h
4
h 0
f (x)2
where this constant h/4 is best possible.
Opial’s inequality and its generalizations, extensions, and discretizations play a fun-damental role in establishing the existence and uniqueness of initial and boundary value problems for ordinary and partial differential equations as well as difference equations [2–6] The inequality (1.1) has received considerable attention and a large number of pa-pers dealing with new proofs, extensions, generalizations, variants, and discrete analogs
of Opial’s inequality have appeared in some literature [7–22] For an extensive survey on these inequalities, see [2,6] The main purpose of the present paper is to establish some new Opial-type inequalities involving functions of two and many independent variables Our results in special cases yield some of the recent results on Opial’s inequality and pro-vide some new estimates on such types of inequalities
Trang 22 Main results
Our main results are given in the following theorems
Theorem 2.1 Let u i(s,t), v i(s,t), i =1, ,n, be real-valued absolutely continuous func-tions defined on [a,b] ×[c,d] and a,b,c,d ∈[0,∞ ) with u i(s,c) = u i(a,t) = u i(a,c) = 0,
v i(s,c) = v i(a,t) = v i(a,c) = 0, i =1, ,n Let F, G be real-valued nonnegative continuous and nondecreasing functions on [0, ∞)n with F(0, ,0) = 0, G(0, ,0) = 0 such that all their partial derivatives ∂2F/∂ | u i |2, ∂F/∂ | u i | , ∂2G/∂ | v i |2, ∂G/∂ | v i | , i =1, ,n are nonneg-ative continuous and nondecreasing functions on [0, ∞)n Let ∂ | u i | /∂s, ∂ | u i | /∂t, ∂2| u i | /∂s∂t,
∂ | v i | /∂s, ∂ | v i | /∂t, ∂2| v i | /∂s∂t, i =1, ,n, be nonnegative continuous and nondecreasing functions on [a,b] ×[c,d] Then
b
a
d
c
Fu1(s,t), ,u n(s,t) n
i =1
∂2G
∂v i 2· ∂v i
∂t · ∂v i
∂s +
∂G
∂v i · ∂ | v i |
∂s∂t
+Gv1(s,t), ,v n(s,t) n
i =1
∂2F
∂u i 2· ∂u i
∂t · ∂u i
∂s +
∂F
∂u i · ∂u i
∂s∂t
+S(s,t) dsdt
≤ F
b
a
d
c
∂2u1
∂s∂t
dsdt, ,
b
a
d
c
∂2u n
∂s∂t
dsdt
· G
b
a
d
c
∂2v1
∂s∂t
dsdt, ,
b
a
d
c
∂2v n
∂s∂t
dsdt
,
(2.1)
where
S(s,t) =
n
i =1
∂F
∂u i∂u i
∂s ·
n
i =1
∂G
∂v i∂v i
∂t +
n
i =1
∂F
∂u i∂u i
∂t ·
n
i =1
∂G
∂v i∂v i
Proof From the hypotheses on u i(s,t), v i(s,t), i =1, ,n, we have
u i(s,t) ≤s
a
t
c
∂2u i
∂σ∂τ(σ,τ)
dσdτ,
v i(s,t) ≤s
a
t
c
∂2v i
∂σ∂τ(σ,τ)
dσdτ,
(2.3)
fors ∈[a,b], t ∈[c,d].
Trang 3From (2.3) and in view of the hypotheses on all partial derivatives, and by letting
U i(s,t) =
s
a
t
c
∂2u i
∂σ∂τ(σ,τ)
dσdτ,
V i(s,t) =
s
a
t
c
∂2v i
∂σ∂τ(σ,τ)
dσdτ,
(2.4)
we obtain
b
a
d
c
Fu1(s,t), ,u n(s,t) n
i =1
∂2G
∂v i 2· ∂v i
∂t · ∂v i
∂s +
∂G
∂v i · ∂2v i
∂s∂t
+Gv1(s,t), ,v n(s,t) n
i =1
∂2F
∂u i 2· ∂u i
∂t · ∂u i
∂s +
∂F
∂u i · ∂2u i
∂s∂t
+
n
i =1
∂F
∂u i · ∂u i
∂s ·n
i =1
∂G
∂v i · ∂v i
∂t
+
n
i =1
∂F
∂u i · ∂u i
∂t ·
n
i =1
∂G
∂v i · ∂v i
∂s dsdt
≤
b
a
d
c
F
U1(s,t), ,U n(s,t)
·
n
i =1
∂2G
∂V i2· ∂V i
∂t · ∂V i
∂s +
∂G
∂V i · ∂2V i
∂s∂t
+G
V1(s,t), ,V n(s,t)
·n
i =1
∂2F
∂U i2· ∂U i
∂t · ∂U i
∂s +
∂F
∂U i · ∂2U i
∂s∂t
+
n
i =1
∂F
∂U i
∂U i
∂s ·n
i =1
∂G
∂V i
∂V i
∂t +
n
i =1
∂F
∂U i
∂U i
∂t ·n
i =1
∂G
∂V i
∂V i
∂s dsdt
=
b
a
d
c
∂2
∂s∂t
F
U1(s,t), ,U n(s,t)
· G
V1(s,t), ,V n(s,t)
dsdt
= F
U1(b,d), ,U n(b,d)
· G
V1(b,d), ,V n(b,d)
= F
b
a
d
c
∂2u1
∂s∂t
dsdt, ,
b
a
d
c
∂2u n
∂s∂t
dsdt
· G
b
a
d
c
∂2v1
∂s∂t
dsdt, ,
b
a
d
c
∂2v n
∂s∂t
dsdt
(2.5)
Trang 4Remark 2.2 (i) Taking G =1 in inequality (2.1), and in view of
∂2G
∂v
i 2· ∂v
i
∂t · ∂v
i
∂s +
∂G
∂v
i∂v i
∂s∂t =0, S(s,t) =0, (2.6) fori =1, ,n, we have
b
a
d
c
n
i =1
∂2F
∂u i 2· ∂u i
∂t · ∂u i
∂s +
∂F
∂u i · ∂2u i
∂s∂t dsdt
≤ F
b
a
d
c
∂2u1
∂s∂t
dsdt, ,
b
a
d
c
∂2u n
∂s∂t
dsdt
,
(2.7)
fori =1, ,n.
Letu i(s,t) reduce to u i(t), where i =1, ,n and with suitable modifications, then (2.7) becomes the following inequality:
b
a
n
i =1
F i u1(t), ,u
n(t)u
i(t) dt ≤ Fb
a
u
1(t)dt, ,b
a
u
n(t)dt .
(2.8) This is a recent inequality which was given by Peˇcari´c and Brneti´c [18,19]
Takingn =1, inequality (2.7) reduces to
b
a
d
c
∂2F
∂ | u |2· ∂ | u |
∂t · ∂ | u |
∂s +
∂F
∂ | u | ·
∂2| u |
∂s∂t dsdt ≤ F
b
a
d
c
∂
2u
∂s∂t
dsdt
Letu(s,t) reduce to u(t) and with suitable modifications, then the above inequality
becomes the following inequality:
b
a F f (t)f (t)dt ≤ Fb
a
f (x)dt . (2.10)
This is an inequality which was given by Godunova and Levin [12]
(ii) TakingG = F and u i(s,t) = v i(s,t), i =1, ,n, in inequality (2.1), we have
b
a
d
c
Fu1(s,t), ,u
n(s,t) n
i =1
∂2G
∂u
i 2· ∂u
i
∂t · ∂u
i
∂s +
∂G
∂u
i∂u i
∂s∂t
+
n
i =1
∂F
∂u i
∂u i
∂s ·n
i =1
∂F
∂u i
∂u i
∂t dsdt
≤1
2· F2
b
a
d
c
∂2u1
∂s∂t
dsdt, ,
b
a
d
c
∂2u n
∂s∂t
dsdt
.
(2.11)
Trang 5Takingn =1, (2.11) reduces to
b
a
d
c
Fu(s,t) ∂2G
∂ | u |2· ∂ | u |
∂t · ∂ | u |
∂s +
∂G
∂ | u |
∂ | u |
∂s∂t +
∂F
∂u
∂u
∂s
∂F
∂u
∂u
∂t dsdt
≤1
2· F2
b
a
d
c
∂s∂t ∂2udsdt
.
(2.12)
Let u(s,t) reduce to u(t) and with suitable modifications, then (2.12) becomes the following inequality:
b
a
Fu(t) · F u(t) · u (t)dt ≤1
2F2
b
a
u (t)dt . (2.13)
This is an inequality given by Pachpatte in [15]
Inequality (2.12) is also a similar form of the following inequality which was given by Yang [22]:
b1
a1
b2
a2
f
t1,t2 ∂2f
∂t1∂t2
dt1dt2≤
b1− a1
b2− a2
8
b1
a1
b2
a2
∂2f
∂t1∂t2
t1,t2
2
dt1dt2.
(2.14) (iii) Letu i(s,t) and v i(s,t) reduce to u i(s) and v i(s), respectively, and with suitable
mod-ifications (wherei =1, ,n), then inequality (2.1) changes to the following inequality:
b
a
Fu1(t), ,u n(t) n
i =1
G iv1(t), ,v n(t)v
i(t)
+Gv1(t), ,v n(t) n
i =1
F i u1(t), ,u n(t)u
i(t) dt
≤ F
b
a
u
1(t)dt, ,b
a
u
n(t)dt · Gb
a
u
1(t)dt, ,b
a
u
n(t)dt .
(2.15) This is an inequality given by Agarwal and Pang in [2]
Takingn =1,G =1,F(u) = u2, (2.15) changes to
b
a
u(t)u (t)dt ≤1
2(b − a)
b
a
u (t) 2
This is another version of the Opial’s inequality, (see [13])
(iv) TakingG =1,F =(| u1|, , | u n |)=n
i =1f i(| u i |),i =1, ,n, in (2.1), (2.1) changes
to a general form of the inequality which was given by Pachpatte [16], where the functions
f imust satisfy some suitable conditions, (see [16])
Trang 6Theorem 2.3 Let u i(s,t), v i(s,t), F, G, ∂2F/∂ | u i |2, ∂F/∂ | u i | , ∂ | u i | /∂s, ∂ | u i | /∂t, ∂2| u i | /∂s∂t,
∂2G/∂ | v i |2, ∂G/∂ | v i | , ∂ | v i | /∂s, ∂ | v i | /∂t, ∂2| v i | /∂s∂t, i =1, ,n, be as in Theorem 2.1 Let
p i(s,t), q i(s,t), i =1, ,n, be real-valued positive functions defined on [a,b] ×[c,d] satis-fying
b
a
d
c p i(s,t)dsdt =1,
b
a
d
c q i(s,t)dsdt =1 (i =1, ,n). (2.17)
Let h i , w i , i =1, ,n, be real-valued positive convex and increasing functions on (0, ∞)2 Then the following integral inequality holds:
b
a
d
c
Fu1(s,t), ,u n(s,t) n
i =1
∂2G
∂v i 2· ∂v i
∂t · ∂v i
∂s +
∂G
∂v i∂2v i
∂s∂t
+Gv1(s,t), ,v n(s,t) n
i =1
∂2F
∂u i 2· ∂u i
∂t · ∂u i
∂s +
∂F
∂u i∂2u i
∂s∂t
+S(s,t) dsdt
≤ F
h −1
b
a
d
c p1(s,t)h1
∂2u1/∂s∂t
p1(s,t) dsdt , ,
h −1
n
b
a
d
c p n(s,t)h n ∂2u n /∂s∂t
p n(s,t) dsdt
· G
w −1
b
a
d
c q1(s,t)w1
∂2v1/∂s∂t
q1(s,t) dsdt
, ,
w n −1
b
a
d
c q n(s,t)w n
∂2v n /∂s∂t
q n(s,t) dsdt ,
(2.18)
where
S(s,t) =
n
i =1
∂F
∂u i∂u i
∂s ·
n
i =1
∂G
∂v i∂v i
∂t +
n
i =1
∂F
∂u i∂u i
∂t ·
n
i =1
∂G
∂v i∂v i
∂s .
(2.19)
Proof From the hypotheses, we have
b
a
d
c
∂u2i
∂s∂t
dsdt =
b
a
d
c p i(s,t)∂u2
i /∂s∂tp i(s,t)dsdt
b
a
d
c p i(s,t)dsdt ,
b
a
d
c
∂v2i
∂s∂t
dsdt =
b
a
d
c q i(s,t)∂v2
i /∂s∂t |q i(s,t)dsdt
b
a
d
c q i(s,t)dsdt ,
(2.20)
fori =1, ,n.
Trang 7From (2.20), the hypotheses onh i,w i,i =1, ,n, and in view of Jensen’s inequality,
we obtain
h i
b
a
d
c
∂u2i
∂s∂t
dsdt
≤
b
a
d
c p i(s,t) · h i ∂2u i /∂s∂t
p i(s,t) dsdt,
w i
b
a
d
c
∂v2i
∂s∂t
dsdt
≤
b
a
d
c q i(s,t) · w i
∂2v i /∂s∂t
q i(s,t) dsdt,
(2.21)
fori =1, ,n.
From (2.21), we observe that
b
a
d
c
∂u2i
∂s∂t
dsdt ≤ h(i) −1
b
a
d
c p i(s,t) · h i ∂2u i /∂s∂t
p i(s,t) dsdt
,
b
a
d
c
∂v2i
∂s∂t
dsdt ≤ w(i) −1
b
a
d
c q i(s,t) · w i
∂2v i /∂s∂t
q i(s,t) dsdt
,
(2.22)
fori =1, ,n.
From (2.22) and in view of inequality (2.1), we get inequality (2.18) and the proof is
Remark 2.4 (i) Taking G =1 in inequality (2.18), and in view of
∂2G
∂v i 2· ∂v i
∂t · ∂v i
∂s +
∂G
∂v i∂v i
fori =1, ,n, and
(2.18) becomes
b
a
d
c
n
i =1
∂2F
∂u i 2· ∂u i
∂t · ∂u i
∂s +
∂F
∂u i · ∂2u i
∂s∂t dsdt
≤ F
h −1
b
a
d
c p1(s,t)h1
∂2u1/∂s∂t
p1(s,t) dsdt
, ,
h −1
n
b
a
d
c p n(s,t)h n
∂2u n /∂s∂t
p n(s,t) dsdt ,
(2.25)
fori =1, ,n.
Trang 8Letu i(s,t), h i(s,t), and p i(s,t) change to f i(t), h i(t), and p i(t), respectively, where i =
1, ,n, then (2.25) reduces to the following inequality:
b
a
n
i =1
D i Ff1(t), ,f n(t)f
i(t) dt
≤ F
h −11
b
a p1(t)h1
f
1(t)
p1(t) dt
, ,h − n1
b
a p n(t)h n
f
n(t)
p n(t) dt
, (2.26)
whereD i F is as in [18] This is an inequality given by Peˇcari´c in [18]
TakingF(x1, ,x n)=n
i =1F i(x i),i =1, ,n, (2.25) changes to a general form of the inequality which was given by Pachpatte [16] Takingn =1, (2.25) reduces to a general form of the inequality which was given by Godunova and Levin [12]
On the other hand, inequality (2.18) is also a general form of another inequality in Peˇcari´c and Brneti´c [20, Theorem 1]
(ii) TakingG = F and u i(s,t) = v i(s,t), i =1, ,n, in inequality (2.18), we have
b
a
d
c
Fu1(s,t), ,u
n(s,t) n
i =1
∂2G
∂u
i 2· ∂u
i
∂t · ∂u
i
∂s +
∂G
∂u
i∂u i
∂s∂t
+
n
i =1
∂F
∂u i
∂u i
∂s ·n
i =1
∂F
∂u i
∂u i
∂t dsdt
≤1
2· F2
h −1
b
a
d
c p1(s,t)h1
∂2u1/∂s∂t
p1(s,t) dsdt
, ,
h − n1
b
a
d
c p n(s,t)h n
∂2u n /∂s∂t
p n(s,t) dsdt .
(2.27) Takingn =1, (2.27) reduces to
b
a
d
c
Fu(s,t) ∂2G
∂ | u |2· ∂ | u |
∂t · ∂ | u |
∂s +
∂G
∂ | u |
∂ | u |
∂s∂t +
∂F
∂u
∂u
∂s
∂F
∂u
∂u
∂t dsdt
≤1
2· F2
h −1
b
a
d
c p(s,t)h ∂2u/∂s∂t
p(s,t) dsdt
.
(2.28)
This is a general form of the inequality which was given by Pachpatte [14]
(iii) Letu i(s,t), v i(s,t), h i(s,t), w i(s,t), p i(s,t), and q i(s,t) reduce to u i(t), v i(t), h i(t),
w i(t), p i(t), and q i(t), respectively, and with suitable modifications (where i =1, ,n),
Trang 9then inequality (2.18) changes to the following inequality:
b
a
Fu1(t), ,u
n(t) n
i =1
G iv1(t), ,v
n(t)v
i(t)
+Gv1(t), ,v
n(t) n
i =1
F i u1(t), ,u
n(t)u
i(t) dt
≤ F
h −1
b
a p1(t)h1
u
1(t)
p1(t) dt
, ,h −1
n
b
a p n(t)h n
u
n(t)
p n(t) dt
· G
w −1
b
a q1(t)w1
v
1(t)
q1(t) dt
, ,w n −1
b
a q n(t)w n
v
n(t)
q n(t) dt
.
(2.29) This is just an inequality given by Agarwal and Pang in [2]
Theorem 2.5 Let u i(s,t), v i(s,t), F, G, be as in Theorem 2.1 Let φ i , ψ i , i =1, ,n, be real-valued positive convex and increasing functions on (0, ∞)2 Let r i(s,t) ≥ 0, ∂2r i /∂s∂t > 0,
r i(s,c) = r i(a,t) = r i(a,c) = 0, ∂2e i /∂s∂t > 0, e i(s,c) = e i(a,t) = e i(a,c) = 0, i =1, ,n Let
∂2F/∂M2i , ∂F/∂M i , ∂2G/∂N2i , ∂G/∂N i , i =1, ,n, be nonnegative continuous and nonde-creasing functions on [0, ∞)n Let ∂M i /∂s, ∂M i /∂t, ∂2M i /∂s∂t, ∂N i ∂s, ∂N i /∂t, ∂2N i /∂s∂t,
i =1, ,n, be nonnegative continuous and nondecreasing functions on [a,b] ×[c,d] Then the following inequality holds:
b
a
d
c
F
M1(s,t), ,M n(s,t)
·
n
i =1
∂2G
∂N2i · ∂N i
∂t · ∂N i
∂s +
∂G
∂N i · ∂2N i
∂s∂t
+G
N1(s,t), ,N n(s,t)
·
n
i =1
∂2F
∂M2i · ∂M i
∂t · ∂M i
∂s +
∂F
∂M i · ∂2M i
∂s∂t
+S(s,t) dsdt
≤ F
b
a
d
c
∂2r1
∂s∂t · φ1
∂2u1/∂s∂t
∂2r1/∂s∂t dsdt, ,
b
a
d
c
∂2r n
∂s∂t · φ n∂2u n /∂s∂t
∂2r n /∂s∂t dsdt
· G
b
a
d
c
∂2e1
∂s∂t · ψ1
∂2v1/∂s∂t
∂2e1/∂s∂t dsdt, ,
b
a
d
c
∂2e n
∂s∂t · ψ n
∂2v n /∂s∂t
∂2e n /∂s∂t dsdt
, (2.30)
where
M i(s,t) = r i(s,t) · φ i u
i(s,t)
r i(s,t) ,
N i(s,t) = e i(s,t) · ψ i v
i(s,t)
e i(s,t) ,
(2.31)
Trang 10for i =1, ,n, and
S(s,t) =
n
i =1
∂F
∂M i
∂M i
∂s ·
n
i =1
∂G
∂N i
∂N i
∂t +
n
i =1
∂F
∂M i
∂M i
∂t ·
n
i =1
∂G
∂N i
∂N i
for i =1, ,n.
Proof From the hypotheses on u i(s,t), v i(s,t), r i(s,t), e i(s,t), i =1, ,n, we have
u i(s,t) ≤s
a
t
c
∂2u i
∂σ∂τ(σ,τ)
dσdτ,
v
i(s,t) ≤s
a
t
c
∂2v i
∂σ∂τ(σ,τ)
dσdτ,
r i(s,t) =
s
a
t
c
∂2r i
∂σ∂τ(σ,τ)dσdτ,
e i(s,t) =
s
a
t
c
∂2e i
∂σ∂τ(σ,τ)dσdτ,
(2.33)
fors ∈[a,b], t ∈[c,d].
From (2.33) and using the hypotheses onφ i,ψ i,i =1, ,n, and Jensen’s inequality, we
have
M i(s,t) ≤
s
a
t
c
∂2r i
∂σ∂τ · φ i
∂2u i /∂σ∂τ
(σ,τ)
∂2r i /∂σ∂τ
(σ,τ) dσdτ,
N i(s,t) ≤
s
a
t
c
∂2e i
∂σ∂τ · ψ i ∂2v i /∂σ∂τ
(σ,τ)
∂2e i /∂σ∂τ
(σ,τ) dσdτ,
(2.34)
fors ∈[a,b], t ∈[c,d].
From (2.34), using the hopytheses on all partial derivatives and in view of
M i(s,t) =
s
a
t
c
∂2r i
∂σ∂τ · φ i
∂2u i /∂σ∂τ
∂2r i /∂σ∂τ dσdτ,
N i(s,t) =
s
a
t
c
∂2e i
∂σ∂τ · ψ i ∂2v i /∂σ∂τ
∂2e i /∂σ∂τ dσdτ,
(2.35)
Trang 11we have
b
a
d
c
F
M1(s,t), ,M n(s,t)
·n
i =1
∂2G
∂N2i · ∂N i
∂t · ∂N i
∂s +
∂G
∂N i · ∂2N i
∂s∂t
+G
N1(s,t), ,N n(s,t)
·n
i =1
∂2F
∂M2i · ∂M i
∂t · ∂M i
∂s +
∂F
∂M i · ∂2M i
∂s∂t
+S(s,t) dsdt
≤
b
a
d
c
F
M1(s,t), ,M n(s,t)
·n
i =1
∂2G
∂N2
i
· ∂N i
∂t · ∂N i
∂s +
∂G
∂N i · ∂2N i
∂s∂t
+G
N1(s,t), ,N n(s,t)
·
n
i =1
∂2F
∂M2
i
· ∂M i
∂t · ∂M i
∂s +
∂F
∂M i · ∂2M i
∂s∂t
+
n
i =1
∂F
∂M i
∂M i
∂s ·
n
i =1
∂G
∂N i
∂N i
∂t +
n
i =1
∂F
∂M i
∂M i
∂t ·
n
i =1
∂G
∂N i
∂N i
∂s dsdt
=
b
a
d
c
∂2
∂s∂t
F
M1(s,t), ,M n(s,t)
· G
N1(s,t), ,N n(s,t)
dsdt
= F
M1(b,d), ,M n(b,d)
· G
N1(b,d), ,N n(b,d)
= F
b
a
d
c
∂2r1
∂s∂t · φ1
∂2u1/∂s∂t
∂2r1/∂s∂t dsdt, ,
b
a
d
c
∂2r n
∂s∂t · φ n
∂2u n /∂s∂t
∂2r n /∂s∂t dsdt
· G
b
a
d
c
∂2e1
∂s∂t · ψ1
∂2v1/∂s∂t
∂2e1/∂s∂t dsdt, ,
b
a
d
c
∂2e n
∂s∂t · ψ n ∂2v n /∂s∂t
∂2e n /∂s∂t dsdt
.
(2.36)
Remark 2.6 (i) Taking n =1, (2.30) changes to a general form of the inequality which was given by Pachpatte [17]
(ii) TakingG =1, (2.30) changes to a general form of the inequality which was given
by Peˇcari´c and Brneti´c [19]
(iii) Takingn =1,G =1, (2.30) changes to the following inequality:
b
a
d
c
∂2F
∂M2· ∂M
∂t · ∂M
∂s +
∂F
∂M · ∂2M
∂s∂t dsdt ≤ F
b
a
d
c
∂2r
∂s∂t · φ ∂2u/∂s∂t
∂2r/∂s∂t dsdt
, (2.37) which is a general form of the follwing inequality established by Rozanova [21]:
b
a F
r(t)φ f (t)
r(t) r
(t)φ f (t)
r (t) dt ≤ F
b
a r (t)φ f (x)
r (t) dt . (2.38)
... functionsf imust satisfy some suitable conditions, (see [16])
Trang 6Theorem...
Trang 4Remark 2.2 (i) Taking G =1 in inequality (2.1), and in view of
∂2G... =1, ,n.
Trang 7From (2.20), the hypotheses on< i>h i,w i,i