1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: " Research Article On Opial-Type Integral Inequalities Wing-Sum Cheung and Chang-Jian Zhao" doc

15 201 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 546,15 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2007, Article ID 38347, 15 pagesdoi:10.1155/2007/38347 Research Article On Opial-Type Integral Inequalities Wing-Sum Cheung and Chang-Jian Zhao Received 22 January 2007; Accepted

Trang 1

Volume 2007, Article ID 38347, 15 pages

doi:10.1155/2007/38347

Research Article

On Opial-Type Integral Inequalities

Wing-Sum Cheung and Chang-Jian Zhao

Received 22 January 2007; Accepted 4 April 2007

Recommended by Peter Yu Hin Pang

We establish some new Opial-type inequalities involving functions of two and many in-dependent variables Our results in special cases yield some of the recent results on Opial’s inequality and also provide new estimates on inequalities of this type

Copyright © 2007 W.-S Cheung and C.-J Zhao This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, dis-tribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

In the year 1960, Opial [1] established the following integral inequality

Theorem 1.1 Suppose f ∈ C1[0,h] satisfies f (0) = f (h) = 0 and f (x) > 0 for all x ∈

(0,h) Then the integral inequality holds

h 0

f (x) f (x)dx ≤ h

4

h 0



f (x)2

where this constant h/4 is best possible.

Opial’s inequality and its generalizations, extensions, and discretizations play a fun-damental role in establishing the existence and uniqueness of initial and boundary value problems for ordinary and partial differential equations as well as difference equations [2–6] The inequality (1.1) has received considerable attention and a large number of pa-pers dealing with new proofs, extensions, generalizations, variants, and discrete analogs

of Opial’s inequality have appeared in some literature [7–22] For an extensive survey on these inequalities, see [2,6] The main purpose of the present paper is to establish some new Opial-type inequalities involving functions of two and many independent variables Our results in special cases yield some of the recent results on Opial’s inequality and pro-vide some new estimates on such types of inequalities

Trang 2

2 Main results

Our main results are given in the following theorems

Theorem 2.1 Let u i(s,t), v i(s,t), i =1, ,n, be real-valued absolutely continuous func-tions defined on [a,b] ×[c,d] and a,b,c,d ∈[0,∞ ) with u i(s,c) = u i(a,t) = u i(a,c) = 0,

v i(s,c) = v i(a,t) = v i(a,c) = 0, i =1, ,n Let F, G be real-valued nonnegative continuous and nondecreasing functions on [0, ∞)n with F(0, ,0) = 0, G(0, ,0) = 0 such that all their partial derivatives ∂2F/∂ | u i |2, ∂F/∂ | u i | , ∂2G/∂ | v i |2, ∂G/∂ | v i | , i =1, ,n are nonneg-ative continuous and nondecreasing functions on [0, ∞)n Let ∂ | u i | /∂s, ∂ | u i | /∂t, ∂2| u i | /∂s∂t,

∂ | v i | /∂s, ∂ | v i | /∂t, ∂2| v i | /∂s∂t, i =1, ,n, be nonnegative continuous and nondecreasing functions on [a,b] ×[c,d] Then

b

a

d

c



Fu1(s,t), ,u n(s,t) n

i =1



2G

v i 2· ∂v i

∂t · ∂v i

∂s +

∂G

v i  · ∂ | v i |

∂s∂t

+Gv1(s,t), ,v n(s,t) n

i =1



2F

u i 2· ∂u i

∂t · ∂u i

∂s +

∂F

u i  · ∂u i

∂s∂t

+S(s,t) dsdt

≤ F

b

a

d

c



2u1

∂s∂t



dsdt, ,

b

a

d

c



2u n

∂s∂t



dsdt

· G

b

a

d

c



2v1

∂s∂t



dsdt, ,

b

a

d

c



2v n

∂s∂t



dsdt

,

(2.1)

where

S(s,t) =

n



i =1

∂F

u iu i

∂s ·

n



i =1

∂G

v iv i

∂t +

n



i =1

∂F

u iu i

∂t ·

n



i =1

∂G

v iv i

Proof From the hypotheses on u i(s,t), v i(s,t), i =1, ,n, we have

u i(s,t)  ≤s

a

t

c



2u i

∂σ∂τ(σ,τ)



dσdτ,

v i(s,t)  ≤s

a

t

c



 2v i

∂σ∂τ(σ,τ)



dσdτ,

(2.3)

fors ∈[a,b], t ∈[c,d].

Trang 3

From (2.3) and in view of the hypotheses on all partial derivatives, and by letting

U i(s,t) =

s

a

t

c



2u i

∂σ∂τ(σ,τ)



dσdτ,

V i(s,t) =

s

a

t

c



2v i

∂σ∂τ(σ,τ)



dσdτ,

(2.4)

we obtain

b

a

d

c



Fu1(s,t), ,u n(s,t) n

i =1



2G

v i 2· ∂v i

∂t · ∂v i

∂s +

∂G

v i  · ∂2v i

∂s∂t

+Gv1(s,t), ,v n(s,t) n

i =1



2F

u i 2· ∂u i

∂t · ∂u i

∂s +

∂F

u i  · ∂2u i

∂s∂t

+

n



i =1

∂F

u i  · ∂u i

∂s ·n

i =1

∂G

v i  · ∂v i

∂t

+

n



i =1

∂F

u i  · ∂u i

∂t ·

n



i =1

∂G

v i  · ∂v i

∂s dsdt

b

a

d

c



F

U1(s,t), ,U n(s,t)

·

n



i =1



2G

∂V i2· ∂V i

∂t · ∂V i

∂s +

∂G

∂V i · ∂2V i

∂s∂t

+G

V1(s,t), ,V n(s,t)

·n

i =1



2F

∂U i2· ∂U i

∂t · ∂U i

∂s +

∂F

∂U i · ∂2U i

∂s∂t

+

n



i =1

∂F

∂U i

∂U i

∂s ·n

i =1

∂G

∂V i

∂V i

∂t +

n



i =1

∂F

∂U i

∂U i

∂t ·n

i =1

∂G

∂V i

∂V i

∂s dsdt

=

b

a

d

c

2

∂s∂t

F

U1(s,t), ,U n(s,t)

· G

V1(s,t), ,V n(s,t)

dsdt

= F

U1(b,d), ,U n(b,d)

· G

V1(b,d), ,V n(b,d)

= F

b

a

d

c



2u1

∂s∂t



dsdt, ,

b

a

d

c



2u n

∂s∂t



dsdt

· G

b

a

d

c



2v1

∂s∂t



dsdt, ,

b

a

d

c



2v n

∂s∂t



dsdt

(2.5)

Trang 4

Remark 2.2 (i) Taking G =1 in inequality (2.1), and in view of

2G

v

i 2· ∂v

i

∂t · ∂v

i

∂s +

∂G

v

iv i

∂s∂t =0, S(s,t) =0, (2.6) fori =1, ,n, we have

b

a

d

c

n

i =1



2F

u i 2· ∂u i

∂t · ∂u i

∂s +

∂F

u i  · ∂2u i

∂s∂t dsdt

≤ F

b

a

d

c



2u1

∂s∂t



dsdt, ,

b

a

d

c



2u n

∂s∂t



dsdt

,

(2.7)

fori =1, ,n.

Letu i(s,t) reduce to u i(t), where i =1, ,n and with suitable modifications, then (2.7) becomes the following inequality:

b

a

n

i =1

F i u1(t), ,u

n(t)u 

i(t) dt ≤ Fb

a

u 

1(t)dt, ,b

a

u 

n(t)dt .

(2.8) This is a recent inequality which was given by Peˇcari´c and Brneti´c [18,19]

Takingn =1, inequality (2.7) reduces to

b

a

d

c



2F

∂ | u |2· ∂ | u |

∂t · ∂ | u |

∂s +

∂F

∂ | u | ·

2| u |

∂s∂t dsdt ≤ F

b

a

d

c







2u

∂s∂t



dsdt

Letu(s,t) reduce to u(t) and with suitable modifications, then the above inequality

becomes the following inequality:

b

a F f (t)f (t)dt ≤ Fb

a

f (x)dt . (2.10)

This is an inequality which was given by Godunova and Levin [12]

(ii) TakingG = F and u i(s,t) = v i(s,t), i =1, ,n, in inequality (2.1), we have

b

a

d

c



Fu1(s,t), ,u

n(s,t) n

i =1



2G

u

i 2· ∂u

i

∂t · ∂u

i

∂s +

∂G

u

iu i

∂s∂t

+

n



i =1

∂F

∂u i

∂u i

∂s ·n

i =1

∂F

∂u i

∂u i

∂t dsdt

1

2· F2

b

a

d

c



2u1

∂s∂t



dsdt, ,

b

a

d

c



2u n

∂s∂t



dsdt

.

(2.11)

Trang 5

Takingn =1, (2.11) reduces to

b

a

d

c



Fu(s,t) 2G

∂ | u |2· ∂ | u |

∂t · ∂ | u |

∂s +

∂G

∂ | u |

∂ | u |

∂s∂t +

∂F

∂u

∂u

∂s

∂F

∂u

∂u

∂t dsdt

1

2· F2

b

a

d

c



∂s∂t ∂2udsdt

.

(2.12)

Let u(s,t) reduce to u(t) and with suitable modifications, then (2.12) becomes the following inequality:

b

a

Fu(t) · F u(t) · u (t) dt ≤1

2F2

b

a

u (t)dt . (2.13)

This is an inequality given by Pachpatte in [15]

Inequality (2.12) is also a similar form of the following inequality which was given by Yang [22]:

b1

a1

b2

a2



f

t1,t2  2f

∂t1∂t2



dt1dt2



b1− a1 

b2− a2 

8

b1

a1

b2

a2



2f

∂t1∂t2



t1,t2

2

dt1dt2.

(2.14) (iii) Letu i(s,t) and v i(s,t) reduce to u i(s) and v i(s), respectively, and with suitable

mod-ifications (wherei =1, ,n), then inequality (2.1) changes to the following inequality:

b

a



Fu1(t), ,u n(t) n

i =1

G  iv1(t), ,v n(t)v 

i(t)

+Gv1(t), ,v n(t) n

i =1

F i u1(t), ,u n(t)u 

i(t) dt

≤ F

b

a

u 

1(t)dt, ,b

a

u 

n(t)dt · Gb

a

u 

1(t)dt, ,b

a

u 

n(t)dt .

(2.15) This is an inequality given by Agarwal and Pang in [2]

Takingn =1,G =1,F(u) = u2, (2.15) changes to

b

a

u(t)u (t)dt ≤1

2(b − a)

b

a

u (t) 2

This is another version of the Opial’s inequality, (see [13])

(iv) TakingG =1,F =(| u1|, , | u n |)=n

i =1f i(| u i |),i =1, ,n, in (2.1), (2.1) changes

to a general form of the inequality which was given by Pachpatte [16], where the functions

f imust satisfy some suitable conditions, (see [16])

Trang 6

Theorem 2.3 Let u i(s,t), v i(s,t), F, G, ∂2F/∂ | u i |2, ∂F/∂ | u i | , ∂ | u i | /∂s, ∂ | u i | /∂t, ∂2| u i | /∂s∂t,

2G/∂ | v i |2, ∂G/∂ | v i | , ∂ | v i | /∂s, ∂ | v i | /∂t, ∂2| v i | /∂s∂t, i =1, ,n, be as in Theorem 2.1 Let

p i(s,t), q i(s,t), i =1, ,n, be real-valued positive functions defined on [a,b] ×[c,d] satis-fying

b

a

d

c p i(s,t)dsdt =1,

b

a

d

c q i(s,t)dsdt =1 (i =1, ,n). (2.17)

Let h i , w i , i =1, ,n, be real-valued positive convex and increasing functions on (0, ∞)2 Then the following integral inequality holds:

b

a

d

c



Fu1(s,t), ,u n(s,t) n

i =1



2G

v i 2· ∂v i

∂t · ∂v i

∂s +

∂G

v i2v i

∂s∂t

+Gv1(s,t), ,v n(s,t) n

i =1



2F

u i 2· ∂u i

∂t · ∂u i

∂s +

∂F

u i2u i

∂s∂t

+S(s,t) dsdt

≤ F



h −1

b

a

d

c p1(s,t)h1

 2u1/∂s∂t

p1(s,t) dsdt , ,

h −1

n

b

a

d

c p n(s,t)h n 2u n /∂s∂t

p n(s,t) dsdt

· G



w −1

b

a

d

c q1(s,t)w1

 2v1/∂s∂t

q1(s,t) dsdt

, ,

w n −1

b

a

d

c q n(s,t)w n

 2v n /∂s∂t

q n(s,t) dsdt ,

(2.18)

where

S(s,t) =

n



i =1

∂F

u iu i

∂s ·

n



i =1

∂G

v iv i

∂t +

n



i =1

∂F

u iu i

∂t ·

n



i =1

∂G

v iv i

∂s .

(2.19)

Proof From the hypotheses, we have

b

a

d

c



∂u2i

∂s∂t



dsdt =

b

a

d

c p i(s,t)∂u2

i /∂s∂tp i(s,t)dsdt

b

a

d

c p i(s,t)dsdt ,

b

a

d

c



∂v2i

∂s∂t



dsdt =

b

a

d

c q i(s,t)∂v2

i /∂s∂t |q i(s,t)dsdt

b

a

d

c q i(s,t)dsdt ,

(2.20)

fori =1, ,n.

Trang 7

From (2.20), the hypotheses onh i,w i,i =1, ,n, and in view of Jensen’s inequality,

we obtain

h i

b

a

d

c



∂u2i

∂s∂t



dsdt

b

a

d

c p i(s,t) · h i 2u i /∂s∂t

p i(s,t) dsdt,

w i

b

a

d

c



∂v2i

∂s∂t



dsdt

b

a

d

c q i(s,t) · w i

 2v i /∂s∂t

q i(s,t) dsdt,

(2.21)

fori =1, ,n.

From (2.21), we observe that

b

a

d

c



∂u2i

∂s∂t



dsdt ≤ h(i) −1

b

a

d

c p i(s,t) · h i 2u i /∂s∂t

p i(s,t) dsdt

,

b

a

d

c



∂v2i

∂s∂t



dsdt ≤ w(i) −1

b

a

d

c q i(s,t) · w i

 2v i /∂s∂t

q i(s,t) dsdt

,

(2.22)

fori =1, ,n.

From (2.22) and in view of inequality (2.1), we get inequality (2.18) and the proof is

Remark 2.4 (i) Taking G =1 in inequality (2.18), and in view of

2G

v i 2· ∂v i

∂t · ∂v i

∂s +

∂G

v iv i

fori =1, ,n, and

(2.18) becomes

b

a

d

c

n

i =1



2F

u i 2· ∂u i

∂t · ∂u i

∂s +

∂F

u i  · ∂2u i

∂s∂t dsdt

≤ F



h −1

b

a

d

c p1(s,t)h1

 2u1/∂s∂t

p1(s,t) dsdt

, ,

h −1

n

b

a

d

c p n(s,t)h n

 2u n /∂s∂t

p n(s,t) dsdt ,

(2.25)

fori =1, ,n.

Trang 8

Letu i(s,t), h i(s,t), and p i(s,t) change to f i(t), h i(t), and p i(t), respectively, where i =

1, ,n, then (2.25) reduces to the following inequality:

b

a

n

i =1

D i Ff1(t), ,f n(t)f 

i(t) dt

≤ F



h −11

b

a p1(t)h1

 f 

1(t)

p1(t) dt

, ,h − n1

b

a p n(t)h n

 f 

n(t)

p n(t) dt

, (2.26)

whereD i F is as in [18] This is an inequality given by Peˇcari´c in [18]

TakingF(x1, ,x n)=n

i =1F i(x i),i =1, ,n, (2.25) changes to a general form of the inequality which was given by Pachpatte [16] Takingn =1, (2.25) reduces to a general form of the inequality which was given by Godunova and Levin [12]

On the other hand, inequality (2.18) is also a general form of another inequality in Peˇcari´c and Brneti´c [20, Theorem 1]

(ii) TakingG = F and u i(s,t) = v i(s,t), i =1, ,n, in inequality (2.18), we have

b

a

d

c



Fu1(s,t), ,u

n(s,t) n

i =1



2G

u

i 2· ∂u

i

∂t · ∂u

i

∂s +

∂G

u

iu i

∂s∂t

+

n



i =1

∂F

∂u i

∂u i

∂s ·n

i =1

∂F

∂u i

∂u i

∂t dsdt

1

2· F2



h −1

b

a

d

c p1(s,t)h1

 2u1/∂s∂t

p1(s,t) dsdt

, ,

h − n1

b

a

d

c p n(s,t)h n

 2u n /∂s∂t

p n(s,t) dsdt .

(2.27) Takingn =1, (2.27) reduces to

b

a

d

c



Fu(s,t) 2G

∂ | u |2· ∂ | u |

∂t · ∂ | u |

∂s +

∂G

∂ | u |

∂ | u |

∂s∂t +

∂F

∂u

∂u

∂s

∂F

∂u

∂u

∂t dsdt

1

2· F2



h −1

b

a

d

c p(s,t)h 2u/∂s∂t

p(s,t) dsdt

.

(2.28)

This is a general form of the inequality which was given by Pachpatte [14]

(iii) Letu i(s,t), v i(s,t), h i(s,t), w i(s,t), p i(s,t), and q i(s,t) reduce to u i(t), v i(t), h i(t),

w i(t), p i(t), and q i(t), respectively, and with suitable modifications (where i =1, ,n),

Trang 9

then inequality (2.18) changes to the following inequality:

b

a



Fu1(t), ,u

n(t) n

i =1

G  iv1(t), ,v

n(t)v 

i(t)

+Gv1(t), ,v

n(t) n

i =1

F i u1(t), ,u

n(t)u 

i(t) dt

≤ F



h −1

b

a p1(t)h1

 u 

1(t)

p1(t) dt

, ,h −1

n

b

a p n(t)h n

 u 

n(t)

p n(t) dt

· G



w −1

b

a q1(t)w1

 v 

1(t)

q1(t) dt

, ,w n −1

b

a q n(t)w n

 v 

n(t)

q n(t) dt

.

(2.29) This is just an inequality given by Agarwal and Pang in [2]

Theorem 2.5 Let u i(s,t), v i(s,t), F, G, be as in Theorem 2.1 Let φ i , ψ i , i =1, ,n, be real-valued positive convex and increasing functions on (0, ∞)2 Let r i(s,t) ≥ 0, ∂2r i /∂s∂t > 0,

r i(s,c) = r i(a,t) = r i(a,c) = 0, ∂2e i /∂s∂t > 0, e i(s,c) = e i(a,t) = e i(a,c) = 0, i =1, ,n Let

2F/∂M2i , ∂F/∂M i , ∂2G/∂N2i , ∂G/∂N i , i =1, ,n, be nonnegative continuous and nonde-creasing functions on [0, ∞)n Let ∂M i /∂s, ∂M i /∂t, ∂2M i /∂s∂t, ∂N i ∂s, ∂N i /∂t, ∂2N i /∂s∂t,

i =1, ,n, be nonnegative continuous and nondecreasing functions on [a,b] ×[c,d] Then the following inequality holds:

b

a

d

c



F

M1(s,t), ,M n(s,t)

·

n



i =1



2G

∂N2i · ∂N i

∂t · ∂N i

∂s +

∂G

∂N i · ∂2N i

∂s∂t

+G

N1(s,t), ,N n(s,t)

·

n



i =1



2F

∂M2i · ∂M i

∂t · ∂M i

∂s +

∂F

∂M i · ∂2M i

∂s∂t

+S(s,t) dsdt

≤ F

b

a

d

c

2r1

∂s∂t · φ1

 2u1/∂s∂t

2r1/∂s∂t dsdt, ,

b

a

d

c

2r n

∂s∂t · φ n2u n /∂s∂t

2r n /∂s∂t dsdt

· G

b

a

d

c

2e1

∂s∂t · ψ1

 2v1/∂s∂t

2e1/∂s∂t dsdt, ,

b

a

d

c

2e n

∂s∂t · ψ n

 2v n /∂s∂t

2e n /∂s∂t dsdt

, (2.30)

where

M i(s,t) = r i(s,t) · φ i u

i(s,t)

r i(s,t) ,

N i(s,t) = e i(s,t) · ψ i v

i(s,t)

e i(s,t) ,

(2.31)

Trang 10

for i =1, ,n, and

S(s,t) =

n



i =1

∂F

∂M i

∂M i

∂s ·

n



i =1

∂G

∂N i

∂N i

∂t +

n



i =1

∂F

∂M i

∂M i

∂t ·

n



i =1

∂G

∂N i

∂N i

for i =1, ,n.

Proof From the hypotheses on u i(s,t), v i(s,t), r i(s,t), e i(s,t), i =1, ,n, we have

u i(s,t)  ≤s

a

t

c



2u i

∂σ∂τ(σ,τ)



dσdτ,

v

i(s,t)  ≤s

a

t

c



 2v i

∂σ∂τ(σ,τ)



dσdτ,

r i(s,t) =

s

a

t

c

2r i

∂σ∂τ(σ,τ)dσdτ,

e i(s,t) =

s

a

t

c

2e i

∂σ∂τ(σ,τ)dσdτ,

(2.33)

fors ∈[a,b], t ∈[c,d].

From (2.33) and using the hypotheses onφ i,ψ i,i =1, ,n, and Jensen’s inequality, we

have

M i(s,t) ≤

s

a

t

c

2r i

∂σ∂τ · φ i

 2u i /∂σ∂τ

(σ,τ)



2r i /∂σ∂τ

(σ,τ) dσdτ,

N i(s,t) ≤

s

a

t

c

2e i

∂σ∂τ · ψ i 2v i /∂σ∂τ

(σ,τ)



2e i /∂σ∂τ

(σ,τ) dσdτ,

(2.34)

fors ∈[a,b], t ∈[c,d].

From (2.34), using the hopytheses on all partial derivatives and in view of

M i(s,t) =

s

a

t

c

2r i

∂σ∂τ · φ i

 2u i /∂σ∂τ

2r i /∂σ∂τ dσdτ,

N i(s,t) =

s

a

t

c

2e i

∂σ∂τ · ψ i 2v i /∂σ∂τ

2e i /∂σ∂τ dσdτ,

(2.35)

Trang 11

we have

b

a

d

c



F

M1(s,t), ,M n(s,t)

·n

i =1



2G

∂N2i · ∂N i

∂t · ∂N i

∂s +

∂G

∂N i · ∂2N i

∂s∂t

+G

N1(s,t), ,N n(s,t)

·n

i =1



2F

∂M2i · ∂M i

∂t · ∂M i

∂s +

∂F

∂M i · ∂2M i

∂s∂t

+S(s,t) dsdt

b

a

d

c



F

M1(s,t), ,M n(s,t)

·n

i =1



2G

∂N2

i

· ∂N i

∂t · ∂N i

∂s +

∂G

∂N i · ∂2N i

∂s∂t

+G

N1(s,t), ,N n(s,t)

·

n



i =1



2F

∂M2

i

· ∂M i

∂t · ∂M i

∂s +

∂F

∂M i · ∂2M i

∂s∂t

+

n



i =1

∂F

∂M i

∂M i

∂s ·

n



i =1

∂G

∂N i

∂N i

∂t +

n



i =1

∂F

∂M i

∂M i

∂t ·

n



i =1

∂G

∂N i

∂N i

∂s dsdt

=

b

a

d

c

2

∂s∂t



F

M1(s,t), ,M n(s,t)

· G

N1(s,t), ,N n(s,t)

dsdt

= F

M1(b,d), ,M n(b,d)

· G

N1(b,d), ,N n(b,d)

= F

b

a

d

c

2r1

∂s∂t · φ1

 2u1/∂s∂t

2r1/∂s∂t dsdt, ,

b

a

d

c

2r n

∂s∂t · φ n

 2u n /∂s∂t

2r n /∂s∂t dsdt

· G

b

a

d

c

2e1

∂s∂t · ψ1

 2v1/∂s∂t

2e1/∂s∂t dsdt, ,

b

a

d

c

2e n

∂s∂t · ψ n 2v n /∂s∂t

2e n /∂s∂t dsdt

.

(2.36)

Remark 2.6 (i) Taking n =1, (2.30) changes to a general form of the inequality which was given by Pachpatte [17]

(ii) TakingG =1, (2.30) changes to a general form of the inequality which was given

by Peˇcari´c and Brneti´c [19]

(iii) Takingn =1,G =1, (2.30) changes to the following inequality:

b

a

d

c



2F

∂M2· ∂M

∂t · ∂M

∂s +

∂F

∂M · ∂2M

∂s∂t dsdt ≤ F

b

a

d

c

2r

∂s∂t · φ 2u/∂s∂t

2r/∂s∂t dsdt

, (2.37) which is a general form of the follwing inequality established by Rozanova [21]:

b

a F 



r(t)φ f (t)

r(t) r

(t)φ f (t)

r (t) dt ≤ F

b

a r (t)φ f (x)

r (t) dt . (2.38)

... functions

f imust satisfy some suitable conditions, (see [16])

Trang 6

Theorem...

Trang 4

Remark 2.2 (i) Taking G =1 in inequality (2.1), and in view of

2G... =1, ,n.

Trang 7

From (2.20), the hypotheses on< i>h i,w i,i

Ngày đăng: 22/06/2014, 18:20

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm