1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article On a New Hilbert-Hardy-Type Integral Operator and Applications" pptx

10 334 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 486,57 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2010, Article ID 812636, 10 pagesdoi:10.1155/2010/812636 Research Article On a New Hilbert-Hardy-Type Integral Operator and Applications 1 Department of Mathematics, Zhaoqing Univ

Trang 1

Volume 2010, Article ID 812636, 10 pages

doi:10.1155/2010/812636

Research Article

On a New Hilbert-Hardy-Type Integral Operator and Applications

1 Department of Mathematics, Zhaoqing University, Guangdong, Zhaoqing 526061, China

2 Department of Mathematics, Guangdong Institute of Education, Guangdong, Guangzhou 510303, China

Correspondence should be addressed to Bicheng Yang,bcyang@pub.guangzhou.gd.cn

Received 7 September 2010; Accepted 26 October 2010

Academic Editor: Sin E Takahasi

Copyrightq 2010 X Liu and B Yang This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

By applying the way of weight functions and a Hardy’s integral inequality, a Hilbert-Hardy-type integral operator is defined, and the norm of operator is obtained As applications, a new Hilbert-Hardy-type inequality similar to Hilbert-type integral inequality is given, and two equivalent inequalities with the best constant factors as well as some particular examples are considered

1 Introduction

Theorem A If kx, y ≥ 0 is a homogeneous function of degree −1 in 0, ∞ × 0, ∞, p > 1,

1/p  1/q  1, and k p  0∞k u, 1u −1/p du ∈ 0, ∞, then for fx, gy ≥ 0, 0 < f p : {0∞f p xdx} 1/p < ∞, and 0 < g q < ∞, one has

0

k

x, y

f xgy

dx dy < k pf

pg

where the constant factor k p is the best possible.

Trang 2

Theorem B If p > 1, ρ / 1, fx ≥ 0, and Fx :x

0 f tdtρ > 1; Fx :xf tdtρ < 1,

0 <∞

0 x p −ρ f p xdx < ∞, then one has

0

x −ρ F p xdx <



p

ρ− 1

p∞

0

where the constant factor p/|ρ − 1| p is the best possible (cf [ 1 , Theorem 330]).

Theorem C If p > 1, 1/p  1/q  1, λ > 0, k λ x, y ≥ 0 is a homogeneous function of degree −λ

in 0, ∞×0, ∞, and for any r > 11/r 1/s  1, 0 < k λ r :0∞k λ u, 1u λ/r−1du < ∞, then for

f x, gy ≥ 0, ϕx : x p 1−λ/r−1 , ψ y : y q 1−λ/s−1 , 0 < f p,ϕ: {0∞ϕ x|fx| p dx}1/p <

and 0 < g q,ψ < ∞, we have

0

k λ

x, y

f xgy

dx dy < k λ rf

p,ϕg

where the constant factor k λ r is the best possible.

For λ  1, r  q, 1.3 reduces to 1.1 We name of 1.1 and 1.3 Hilbert-type integral inequalities Inequalities1.1, 1.2 and 1.3 are important in analysis and its applications

cf 4 6

Setting k1x, y  1/xy γ x R −1/q y S −1/p R, S > 0, RS  γ, Fx x

0f tdt, Gy 

y

similar to Pachpatte’s inequalitycf 7,8 as follows:

0

x R −1/q y S −1/p



x  yγ

F x

x

G

y

y dx dy < pqB R, Sf

pg

1/max{x, y} λ x β/q1y α/p1α, β > −1, p  λ − α − 1 > 1, q  λ − β − 1 > 1 But he cannot

show that the constant factor in the new inequality is the best possible

a Hilbert-Hardy-type integral operator is defined, and the norm of operator is obtained

equivalent inequalities with a best constant factor as well as some particular examples are considered

Trang 3

2 A Lemma and Two Equivalent Inequalities

Lemma 2.1 If λ < 2, k λ x, y is a nonnegative homogeneous function of degree −λ in 0, ∞ ×

0, ∞ with k λ ux, uy  u −λ k x, yu, x, y > 0, and for any α ∈ λ − 1, 1, 0 < kα :

∞

0 k λ 1, uu α−1du < ∞, then0∞k λ u, 1u λ −α−1 du  kα and

0 <

0

k λ 1, uu α−1|ln u|du 

0

Proof Setting v  1/u, we find

0

k λ u, 1u λ −α−1 du

0

There exists β > 0, satisfying α ± β ∈ λ − 1, 1 and 0 < kα ± β < ∞ Since we find

lim

u→ 0 

ln u

u β  u −β  lim

u→ ∞

ln u

there exists M > 0, such that | ln u| ≤ Mu β  u −β  u ∈ 0, ∞, and then

0 <

0

k λ u, 1u λ −α−1 |ln u|du 

0

k λ 1, uu α−1|ln u|du

≤ M

0

k λ 1, uu α−1 u β  u −β

du

 M k

α  β kα − β < ∞.

2.4

The lemma is proved

Theorem 2.2 If p > 1, 1/p  1/q  1, λ1 λ2 λ < 2, k λ x, y≥ 0 is a homogeneous function of

degree −λ in 0, ∞ × 0, ∞, and for any λ1∈ λ − 1, 1, 0 < kλ1 0∞k u, 1u λ1 −1du < ∞, then

for f x, gy ≥ 0, ϕx : x p 2−λ−λ1 −1, ψ y : y q 1−λ2 −1,

F λ x :

x

1

t λ f tdt, Gλ

y :

y

1

0 < f p, ϕ < ∞, and 0 <   G λq,ψ < ∞, one has the following equivalent inequalities:

I :

0

k λ

x, y F λ x  G λ

y

dx dy < k λ1

1− λ1

f

p, ϕ G

λ

J :

0

ψ1−py

0

k λ x, y F λ xdx

p

dy

1/p

< k λ1

1− λ1

f

Trang 4

Proof Setting the weight functions ω λ1, y 2, x as follows:

ω

λ1, y :

0

k λ



x, y y λ2dx

x1−λ1 , λ2, x :

0

k λ



x, y x λ1dy

ω

λ1, yu x/y



0

k u, 1u λ1 −1du  kλ1,

2, xu y/x

0

k 1, uu λ2 −1du  kλ1.

2.9

By H ¨older’s inequalitycf 11 and 2.8, 2.9, we obtain

0

k λ



x, y F λ xdx ∞

0

k λ



x, yx 1−λ1/q

y 1−λ2/p F λ x



y 1−λ2/p

x 1−λ1/q



dx

0

k λ x, y x 1−λ1p−1

y1−λ2 F p

1/p

×



y q 1−λ2 −1∞

0

k λ x, y y λ2dx

x1−λ1

1/q

 k 1/q λ1y 1/p−λ2

0

k λ x, y x 1−λ1p−1

y1−λ2 F p

1/p

.

2.10

Then by Fubini theoremcf 12, it follows:

J p ≤ k p−11

0

k λ



x, y x 1−λ1p−1

y1−λ2 F p

 k p−11

0

0

k λ



x, y x 1−λ1p−1

y1−λ2 dy



F p

 k p λ1

0

x −pλ1 −11F p

λ xdx.

2.11

Since λ1< 1, ρ  pλ1− 1  1 < 1, then by 1.2 for ρ < 1, we have

0

x −pλ1 −11F p

λ xdx <

 1

1− λ1

p∞

0

x p −pλ1 −11f x

x λ

p

dx



 1

1− λ1

p∞

0

x p 2−λ−λ1 −1f p xdx.

2.12

Trang 5

Hence by2.11, we have 2.7 Still by H¨older’s inequality, we find

I

0



ψ −1/q

y ∞ 0

k λ

x, y F λ xdxψ 1/q

y G λ

y

dy ≤ J G

λ

Then by2.7, we have 2.6

On the other-hand, supposing that2.6 is valid, by 2.11 and 1.2 for ρ < 1, it follows J < ∞ If J  0, then 2.7 is naturally valid; if 0 < J < ∞, setting



G λ

y

 ψ1−p

y∞ 0

k λ x, y F λ xdx

p−1

then by2.6, we find



 G λq q,ψ  J p  I < k λ1

1− λ1

f

p, ϕ G

λ

q,ψ ,



 G λq−1

q,ψ  J < k λ1

1− λ1

f

p, ϕ

2.15

Hence, we have2.7, which is equivalent to 2.6

3 A Hilbert-Hardy-Type Integral Operator and Applications

Setting a real function space as follows:

L p ϕ 0, ∞ :



f;f

p, ϕ

0 ϕxf xp

dx

1/p

<



for f ≥ 0 ∈ L p

ϕ 0, ∞, F λ x  xft/t λ dt, define an integral operator T : L p

L p ψ1−p0, ∞ as follows:

Tf

y :

0

k λ



Then, by2.7, Tf ∈ L p

f  / θ∈L p

0,∞

Tf

p,ψ1−p

f

p, ϕ

k λ1

Trang 6

Theorem 3.1 Let the assumptions of Theorem 2.2 be fulfilled, and additionally setting ψy :

y q 2−λ−λ2 −1 Then one has

0

k λ



x, y F λ x  G λ

y

dx dy < k λ1

1 − λ11 − λ2f

p, ϕg

where the constant factor k λ1/1 − λ11 − λ2 is the best possible Moreover the constant factor in

2.6 and 2.7 is the best possible and then

T  k λ1

1− λ1

Proof Since λ2< 1, by1.2, for ρ  qλ2− 1  1 < 1, it follows:



 G λ

q,ψ

0

y −qλ2 −11Gq

λ



y

dy

1/q

< q

1− q λ2− 1  1

0

y q −qλ2 −11



g y

y λ

q

dy

1/q

1− λ2

0

y q 2−λ−λ2 −1g q ydy

1/q

1− λ2

g

q, ψ

3.6

Then, by2.6, we have 3.4

For T > 2, setting  f x, gy as follows:



x λ λ1 −2, 1 ≤ x ≤ T,

0, 0 < x < 1; x > T,

gy



y λ λ2 −2, 1 ≤ y ≤ T,

0, 0 < y < 1; y > T,

3.7

Trang 7

then for 1≤ x, y ≤ T, we find

F λ x 

x



f t

t λ dt

T

x

t λ1 −2dt 1

1− λ1 x λ1 −1− T λ1 −1

,



G λ

y



y

gt

t λ dt 1

1− λ2

y λ2 −1− T λ2 −1

,

I :T

1

k λ

x, y F λ x  G λ

y

dx dy 1 − λ 1

11 − λ2

×

T

1

T

1

k λ



x, y x λ1 −1− T λ1 −1 y λ2 −1− T λ2 −1

dy



dx

11 − λ2I1− I2− I3,

3.8

where I1, I2, and I3are indicated as follows;

I1:

T

1

T

1

k λ

x, y

x λ1 −1y λ2 −1dy



dx,

I2: Tλ1 −1T

1

T

1

k λ

x, y

y λ2 −1dy



dx,

I3: Tλ2 −1T

1

T

1

k λ

x, y

x λ1 −1dx



dy.

3.9

If there exists a positive constant k ≤ kλ1, such that 3.4 is still valid as we replace

k λ1 by k, then in particular, we find

1 − λ11 − λ2 f

p, ϕ g q, ψ

1 − λ11 − λ2

1

x p 2−λ−λ/r−1 x p λλ/r−2 dx

1/p

×

1

y q 2−λ−λ/s−1 y q λλ/s−2 dy

1/q

 1 − λ k ln T

11 − λ2.

3.10

By3.8 and 3.10, we find

1

ln T I1− 1

Trang 8

Since by Fubini theorem, we obtain

I1

T

1

1

x

T/x

1/x

k λ 1, uu λ2 −1du dx



1

0

1/u

1

x dx

k λ 1, uu λ2 −1du

T

1

1

1

x dx

k λ 1, uu λ2 −1du

 ln T

1

0

k λ 1, uu λ2 −1du 1

ln T

1

0

k λ 1, uln uu λ2 −1du



T

1

k λ 1, uu λ2 −1du− 1

ln T

T

1

k λ 1, uln uu λ2 −1du



,

0≤ I2 T λ1 −1T

1

1

x λ1

T/x

1/x

k λ 1, uu λ2 −1dudx

 T λ1 −11

0

1/u

1

x λ1dx

k λ 1, uu λ2 −1du



T

1

1

1

x λ1dx

k λ 1, uu λ2 −1du



1− λ1

1

0



T

1−λ1

k λ 1, uu λ2 −1du



T

1



T

1−λ1

k λ 1, uu λ2 −1du



1− λ1

 2

1

0

k λ 1, uu λ2 −1du

1

k λ 1, uu λ2 −1du



< ∞,

1− λ2

 2

1

0

k λ u, 1u λ1 −1du

1

k λ u, 1u λ1 −1du



< ∞,

3.12

then for T → ∞ in 3.10, byLemma 2.1, we obtain kλ1  0∞k 1, uu λ2 −1du ≤ k Hence

k  kλ1, and then kλ1/1 − λ11 − λ2 is the best value of 3.4

get a contradiction by1.2 that the constant factor in 3.4 is not the best possible By the

3.3, we have 3.5

Trang 9

Corollary 3.2 For λ  1, λ1  1/q, λ2  1/p, F1x :x1/tftdt,  G1y :y1/tgtdt,

in2.6, 2.7 and 3.4, one has the following basic Hilbert-Hardy-type integral inequalities with the

best constant factors:

0

k1



x, y F1x  G1

y

dx dy < pk pf

p G

1

0

0

k1x, y F1xdx

p

dy

1/p

< pk pf

0

k1



x, y F1x  G1

y

dx dy < pqk pf

pg

where k p  k1/q 0∞k λ u, 1u −1/p du, and3.13 is equivalent to 3.14.

Example 3.3 For p > 1, r > 1, 1/p  1/q  1/r  1/s  1, λ1 λ/r, and λ2 λ/s in3.4,

a if 0 < λ < max{r, s}, k λ x, y  1/x  y λ , 1/max{x, y} λand lnx/y/xλ − y λ, then we obtain the following integral inequalities:

0

F λ x  G λ

y



x  yλ dx dy < rsB λ/r, λ/s

r − λs − λf

p, ϕg

q, ψ ,

0

F λ x  G λ

y



x, y λ dx dy < r

2s2

λ r − λs − λf

p, ϕg

q, ψ ,

0

ln

x/y F λ x  G λ

y

x λ − y λ dx dy < rs πcscπ/r2

λ2r − λs − λf

p, ϕg

q, ψ;

3.16

b if 0 < λ < 1, k λ x, y  1/|x − y| λ, then we have

0

F λ x  G λ

y

x − yλ dx dy < rs B1 − λ, λ/r  B1 − λ, λ/s

p, ϕg

c if λ < 0, k λ x, y  min{x, y} −λ, then we find

0

F λ x  G λ



y



x, y λ dx dy < −r2s2

λ r − λs − λf

p, ϕg

where the constant factors in the above inequalities are the best possible

Trang 10

This work is supported by the Emphases Natural Science Foundation of Guangdong

References

1 G H Hardy, J E Littlewood, and G Polya, Inequalities, Cambridge University Press, Cambridge, UK,

1934

2 G H Hardy, “Note on some points in the integral calculus LXIV,” Messenger of Math, vol 57, pp.

12–16, 1928

3 B Yang, “A survey of the study of Hilbert-type inequalities with parameters,” Advances in Math, vol.

38, no 3, pp 257–268, 2009

4 D S Mintrinovic, J E Pecaric, and A M Kink, Inequalities Involving Functions and their Integrals and

Derivertives, Kluwer Academic Publishers, Boston, Mass, USA, 1991.

5 B Yang, The Norm of Operator and Hilbert-Type Inequalities, Science, Beijin, China, 2009.

6 B Yang, “On the norm of a Hilbert’s type linear operator and applications,” Journal of Mathematical

Analysis and Applications, vol 325, no 1, pp 529–541, 2007.

7 B G Pachpatte, “On some new inequalities similar to Hilbert’s inequality,” Journal of Mathematical

Analysis and Applications, vol 226, no 3, pp 166–179, 1998.

8 B G Pachpatte, “Inequalities similar to certain extensions of Hilbert’s inequality,” Journal of

Mathematical Analysis and Applications, vol 243, no 2, pp 217–227, 2000.

9 N Das and S Sahoo, “New inequalities similar to Hardy-Hilbert’s inequality,” Turkish Journal of

Mathematics, vol 33, pp 1–13, 2009.

10 W T Sulaiman, “On three inequalities similar to Hardy-Hilbert’s integral inequality,” Acta

Mathematica Universitatis Comenianae, vol 76, no 2, pp 273–278, 2007.

11 J Kuang, Applied Inequalities, Shangdong Science Technic, Jinan, China, 2004.

12 J Kuang, Introduction to Real Analysis, Hunan Education, Changsha, China, 1996.

...

Trang 10

This work is supported by the Emphases Natural Science Foundation of Guangdong

References...

p, ϕ

k λ1

Trang 6

Theorem... 1

Trang 8

Since by Fubini theorem, we obtain

I1

T

Ngày đăng: 21/06/2014, 07:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm