1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Báo cáo hóa học: " Research Article A Study on the p-Adic q-Integral Representation on p Associated with the Weighted q-Bernstein and q-Bernoulli Polynomials" pot

8 398 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 488,06 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

We investigate some interesting properties of the weighted q-Bernstein polynomials related to the weighted q-Bernoulli numbers and polynomials by using p-adic q-integral on p.. Simsek, “

Trang 1

Volume 2011, Article ID 513821, 8 pages

doi:10.1155/2011/513821

Research Article

A Study on the p-Adic q-Integral Representation on

q-Bernoulli Polynomials

T Kim,1 A Bayad,2 and Y.-H Kim1

1 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea

2 D´epartement de Math´ematiques, Universit´e d’Evry Val d’Essonne, Boulevard Franc¸ois Mitterrand,

91025 Evry Cedex, France

Correspondence should be addressed to A Bayad,abayad@maths.univ-evry.fr

Received 6 December 2010; Accepted 15 January 2011

Academic Editor: Vijay Gupta

Copyrightq 2011 T Kim et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

We investigate some interesting properties of the weighted q-Bernstein polynomials related to the weighted q-Bernoulli numbers and polynomials by using p-adic q-integral on p

1 Introduction and Preliminaries

of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic

assume|q| < 1 If q ∈p, we assume that|1 − q| p < 1 In this paper, we define the q-number

asx q  1 − q x /1 − q see 1 13

weighted q-Bernstein operator of order n for f ∈ C0, 1 is defined by



α

n,q



f | x

n

k0

f



k n

k



x k

q α 1 − x n−k

q −α n

k0

f



k n



B α k,n

x, q

Here B α k,n x, q is called the weighted q-Bernstein polynomials of degree n see 2,5,6

Trang 2

Let UD p be the space of uniformly differentiable functions on p For f ∈ UD p,

I q



f



p

f xdμ q x  lim

N → ∞

1

p N

q

pN−1

x0

see 10

The Carlitz’s q-Bernoulli numbers are defined by

β 0,q  1, qqβ  1k

− β k,q

with the usual convention about replacing β k by β k,qsee 3,9,10 In 3, Carlitz also defined

the expansion of Carlitz’s q-Bernoulli numbers as follows:

β h

0,q h

h q , q h qβ h 1

n

− β h n,q

1, if n  1,

with the usual convention about replacingβ hn

by β h n,q

for α ∈,

β α

0,q  1, q q α β α 1n − β α n,q 

α

α q , if n  1,

1.5

with the usual convention about replacing β αn by β n,q α Let f n x  fx  n By the

definition1.2 of p-adic q-integral on p, we easily get

qI q



f1



 q lim

N → ∞

1

p N

q

pN−1

x0

f x  1q x ,

 lim

N → ∞

1

p N

q

pN−1

x0

f xq x lim

N → ∞

f

p N

q p N

− f0

p N

q



p

f xdμ q x q − 1

f0 q − 1

log q f

0,

1.6

Continuing this process, we obtain easily the relation

q n

p

f n xdμ q x −

p

f xdμ q x q − 1n−1

l0

q l f l  q − 1

log q

n−1



l0

q l fl, 1.7

where n ∈ and fl  dfl/dx see 6

Trang 3

Then by1.2, applying to the function x → x n

q α, we can see that

β α

n,q 

p

x n

q α dμ q x  − α nα

q



m0

q mαm m n−1

q α 1− q∞

m0

q m m n

The weighted q-Bernoulli polynomials are also defined by the generating function as

follows:

F q α t, x  −t α α

q



m0

q mαm e mx qα t1− q∞

m0

q m e mx qα t∞

n0

β α

n,q x t n

see6 Thus, we note that

β α

n,q x n

l0



n l



x n−l

q α q αlx β α

l,q

 −α nα

q



m0

q mαm m  x n−1

q α 1− q∞

m0

q m m  x n

q α

1.10

q-Bernoulli polynomials as follows:

β α

n,q x 

p

x  y n

q α dμ q



y

l0



n l



q αlx x n−l

q α

p

y l

q α dμ q



y

q n β α

m,q n − β α m,qq − 1n−1

l0

q l l m

q αα mα

q

n−1



l0

q αll l m−1

In this paper, we consider the weighted q-Bernstein polynomials to express the bosonic

q-integral on p and investigate some properties of the weighted q-Bernstein polynomials associated with the weighted Bernoulli polynomials by using the expression of p-adic

2 Weighted q-Bernstein Polynomials and q-Bernoulli Polynomials

In this section, we assume that α ∈ and q ∈p with|1 − q| p < 1.

Now we consider the p-adic weighted q-Bernstein operator as follows:



α

n,q



f | x

fx

n

k0

f



k n

k



x k

q α 1 − x n−k

q −α n

k0

f



k n



B k,n α

x, q

Trang 4

The p-adic q-Bernstein polynomials with weight α of degree n are given by

B α k,n

x, q





n k



x k

q α 1 − x n−k

where x ∈ p , α ∈, and n, k ∈ see 6,7 Note that B α k,n x, q  B n−k,n α 1 − x, 1/q That

is, the weighted q-Bernstein polynomials are symmetric.

From the definition of the weighted q-Bernoulli polynomials, we have

β α

n,q−11 − x  −1 n q αn β α

By the definition of p-adic q-integral on p, we get

p

1 − x n

q −α dμ q x  q αn−1n

p

−1  x n

q α dμ q x



p

1− x q α

n

dμ q x.

2.4

From2.3 and 2.4, we have

p

1 − x n

q −α dμ q x n

l0



n l



−1l β α

l,q  q αn−1n β α

n,q −1  β α n,q 2. 2.5

Therefore, we obtain the following lemma

Lemma 2.1 For n ∈ , one has

p

1 − x n

q −α dμ q x n

l0



n l



−1l β α

l,q  q αn−1n β α

n,q −1  β n,q α 2,

β α

n,q−11 − x  −1 n q αn β α

n,q x.

2.6

By2.2, 2.3, and 2.4, we get

q2β α

n,q 2  n α

Thus, we have

β α

n,q2  1

q2β α

n,qα nα

q

q α−1 1 − 1

Therefore, by2.8, we obtain the following proposition

Trang 5

Proposition 2.2 For n ∈with n > 1, one has

β α

n,q2  1

q2β α

n,q

α q q α−1 1 −

1

Corollary 2.3 For n ∈with n > 1, one has

p

1 − x n

q −α dμ q x  q2β α

n,q−1α nα

q

p

1 − x n

q −α dμ q x  α nα

q

 1 − q  q2

p

x n

q −α dμ q−1x 

p

1− x q α

n

dμ q x.

2.11

we have

p

B α k,n

x, q

dμ q x 



n k



p

x k

q α 1 − x n−k

q −α dμ q x





n k

n−k



l0



n − k l



−1l

p

x kl

q α dμ q x





n k



n−k



l0



n − k l



−1l β α

kl,q

2.12

By the symmetry of q-Bernstein polynomials, we get

p

B k,n α

x, q

dμ q x 

p

B n−k,n α



1− x,1

q



dμ q x





n k

l0



k l



−1kl

1 − x n−l

q −α dμ q x.

2.13

Trang 6

For n > k  1, by 2.11 and 2.13, we have

p

B k,n α

x, q

dμ q x 



n k

l0



k l



−1kl



α q  1 − q  q2

p

x n−l

q −α dμ q−1x





α q  1 − q  q2β α

k

⎠q2k

l0

l

⎠−1kl β α

n−l,q−1, if k > 0.

2.14

following theorem

Theorem 2.4 For n, k ∈ with n > k  1, one has

n−k



l0



n − k l



−1l β α

kl,q  q2k

l0



k l



−1kl β α

n−l,q−1, if k /  0. 2.15

In particular, when k  0, one has

α q  1 − q  q2β α

n,q−1 n

l0



n l



−1l β α

Let m, n, k ∈ with m  n > 2k  1 Then we see that

p

B α k,n

x, q

B α k,m

x, q

dμ q x





n

k



m k



p

x 2k

q α 1 − x nm−2k

q −α dμ q x





n

k



m k

2k

l0



2k

l



−1l2k

p

1 − x nm−l

q −α dμ q x.





n

k



m k

2k

l0



2k

l



−1l2k



α q  1 − q  q2

p

x nm−l

q −α dμ q−1x







n

k



m k



l0



2k

l



−1l2k



α q  1 − q  q2β α

nm−l,q−1



.

2.17

Therefore, by2.17, we obtain the following theorem

Trang 7

Theorem 2.5 For m, n, k ∈ with m  n > 2k  1, one has

p

B α k,n

x, q

B k,m α

x, q

dμ q x 

α q  1 − q  q2β α

nm,q−1, if k  0,

k

k

⎠q22k

l0

l

⎠−1l2k β α

nm−l,q−1, if k /  0.

2.18

p

B α k,n

x, q

B α k,m

x, q

dμ q x





n k



m k



p

x 2k

q α 1 − x nm−2k

q −α dμ q x





n k



m k

nm−2k



l0



n  m − 2k l



−1l

p

x 2kl

q α dμ q x





n k



m k

nm−2k

l0



n  m − 2k l



−1l β α

l2k,q

2.19

Therefore, by2.18 and 2.19, we obtain the following theorem

Theorem 2.6 For m, n, k ∈ with m  n > 2k  1, one has

α q  1 − q  q2β α

nm−l,q−1 nm

l0



n  m l



−1l β α

Furthermore, for k /  0, one has

nm−2k

l0



n  m − 2k l



−1l β α

l2k,q  q22k

l0



2k

l



−1l2k β α

nm−l,q−1. 2.21

By the induction hypothesis, we obtain the following theorem

Theorem 2.7 For s ∈ and k, n1, , n s∈ with n1 n2 · · ·  n s > sk  1, one has

p



i1

B k,n α i

x, q

dμ q x 

α q  1 − q  q2β α

n1···n s ,q−1, if k  0,

i1

n i

k

⎠sk

l0

l

⎠−1lsk β α

n1···n s −l,q−1, if k /  0.

2.22

Trang 8

For s ∈, let k, n1, , n s∈ with n1 n2 · · ·  n s > sk  1 Then we show that

p

i1

B α k,n i

x, q

dμ q x 

i1



n i

k

1···ns −sk

l0



n1 · · ·  n s − sk

l



−1l β α

lsk,q

2.23

Theorem 2.8 For s ∈, let k, n1, , n s∈ with n1 n2 · · ·  n s > sk  1 Then one sees that for k  0

n1···n s

l0



n1 · · ·  n s

l



−1l β α

l,q  α nα

q

 1 − q  q2β α

n1···n s ,q−1. 2.24

For k /  0, one has

sk



l0



sk

l



−1lsk β α

n1···n s −l,q−1n1···ns −sk

l0



n1 · · ·  n s − sk

l



−1l β α

lsk,q 2.25

References

1 M Acikgoz and Y Simsek, “On multiple interpolation functions of the N¨orlund-type q-Euler polynomials,” Abstract and Applied Analysis, vol 2009, Article ID 382574, 14 pages, 2009.

2 A Bayad, J Choi, T Kim, Y.-H Kim, and L C Jang, “q-extension of Bernstein polynomials with

weightedα;β,” Journal of Computational and Applied Mathematics In press.

3 L Carlitz, “Expansions of q-Bernoulli numbers,” Duke Mathematical Journal, vol 25, pp 355–364, 1958.

4 A S Hegazi and M Mansour, “A note on q-Bernoulli numbers and polynomials,” Journal of Nonlinear

Mathematical Physics, vol 13, no 1, pp 9–18, 2006.

5 L.-C Jang, W.-J Kim, and Y Simsek, “A study on the p-adic integral representation on passociated

with Bernstein and Bernoulli polynomials,” Advances in Di fference Equations, vol 2010, Article ID

163217, 6 pages, 2010

6 T Kim, “On the weighted q-Bernoulli numbers and polynomials,”http://arxiv.org/abs/1011.5305

7 T Kim, “A note on q-Bernstein polynomials,” Russian Journal of Mathematical Physics, vol 18, no 1,

2011

8 T Kim, “Barnes-type multiple q-zeta functions and q-Euler polynomials,” Journal of Physics A, vol 43,

no 25, Article ID 255201, 11 pages, 2010

9 T Kim, “q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients,”

Russian Journal of Mathematical Physics, vol 15, no 1, pp 51–57, 2008.

10 T Kim, “On a q-analogue of the p-adic log gamma functions and related integrals,” Journal of Number

Theory, vol 76, no 2, pp 320–329, 1999.

11 B A Kupershmidt, “Reflection symmetries of q-Bernoulli polynomials,” Journal of Nonlinear

Mathematical Physics, vol 12, supplement 1, pp 412–422, 2005.

12 H Ozden, I N Cangul, and Y Simsek, “Remarks on q-Bernoulli numbers associated with Daehee numbers,” Advanced Studies in Contemporary Mathematics, vol 18, no 1, pp 41–48, 2009.

13 S.-H Rim, J.-H Jin, E.-J Moon, and S.-J Lee, “On multiple interpolation functions of the q-Genocchi polynomials,” Journal of Inequalities and Applications, vol 2010, Article ID 351419, 13 pages, 2010.

... following proposition < /p> Trang 5

Proposition 2.2 For n ∈with n > 1, one has< /p>

β... n ∈ and fl  dfl/dx see 6 < /p> Trang 3

Then by1.2, applying to the. .. obtain the following theorem < /p> Trang 7

Theorem 2.5 For m, n, k ∈ with

Ngày đăng: 21/06/2014, 06:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN