Volume 2010, Article ID 165098, 18 pagesdoi:10.1155/2010/165098 Research Article A New Iterative Method for Solving Equilibrium Problems and Fixed Point Problems for Infinite Family of N
Trang 1Volume 2010, Article ID 165098, 18 pages
doi:10.1155/2010/165098
Research Article
A New Iterative Method for Solving
Equilibrium Problems and Fixed Point Problems for Infinite Family of Nonexpansive Mappings
1 School of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
2 Department of Mathematics Education and the RINS, Gyeongsang National University,
Chinju 660-701, Republic of Korea
3 Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China
Correspondence should be addressed to Yeol Je Cho,yjcho@gnu.ac.kr
Received 7 January 2010; Revised 21 May 2010; Accepted 11 July 2010
Academic Editor: Simeon Reich
Copyrightq 2010 Shenghua Wang et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
We introduce a new iterative scheme for finding a common element of the solutions sets of a finite family of equilibrium problems and fixed points sets of an infinite family of nonexpansive mappings in a Hilbert space As an application, we solve a multiobjective optimization problem using the result of this paper
1 Introduction
bifunction ofC × C into R, where R is the set of real numbers The equilibrium problem for
the bifunctionΦ : C × C → R is to find x ∈ C such that
Φx, y≥ 0, ∀y ∈ C. 1.1
The set of solutions of the above inequality is denoted by EPΦ Many problems arising from physics, optimization, and economics can reduce to finding a solution of an equilibrium problem
In 2007, S Takahashi and W Takahashi 1 first introduced an iterative scheme by the viscosity approximation method for finding a common element of the solutions set of equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space
Trang 2H and proved a strong convergence theorem which is based on Combettes and Hirstoaga’s
result2 and Wittmann’s result 3 More precisely, they obtained the following theorem
Theorem 1.1 see 1 Let C be a nonempty closed and convex subset of H Let Φ : C × C → R be
a bifunction which satisfies the following conditions:
A1 Φx, x 0 for all x ∈ C;
A2 Φ is monotone, that is, Φx, y Φy, x ≤ 0 for all x, y ∈ C;
A3 For all x, y, z ∈ C,
lim
A4 For each x ∈ C, y → Φx, y is convex and lower semicontinuous.
Φu n , y 1
rn
x n1 α nfxn 1 − α n Su n , ∀n ≥ 1,
1.3
lim
n1
n1
|α n1 − α n | < ∞,
lim inf
n1
|r n1 − r n | < ∞.
1.4
P is the metric projection of H onto C and PFixS∩EPΦfz denotes nearest point in FixS∩EPΦ
Recently, many results on equilibrium problems and fixed points problems in the context of the Hilbert space and Banach space are introducedsee, e.g., 4 8
Trang 3Let F : H → H be a nonlinear mapping The variational inequality problem
corresponding to the mappingF is to find a point x∗∈ C such that
Fx∗, x − x∗ ≥ 0, ∀x ∈ C. 1.6
The variational inequality problem is denoted by VIF, C 9
The mapping F is called κ-Lipschitzian and η-strongly monotone if there exist
constantsκ, η > 0 such that
Fx − Fy ≤ κx − y, ∀x,y ∈ H, 1.7
respectively It is well known that if F is strongly monotone and Lipschitzian on C, then
VIF, C has a unique solution An important problem is how to find a solution of VIF, C Recently, there are many results to solve the VIF, C see, e.g., 10–14
be a countable family of nonexpansive mappings, and{Φi}m
satisfying conditionsA1–A4 such that Ω ∞n1FixTn ∩ EPΦ1 ∩ · · · ∩ EPΦm / ∅ Let
T r i x
z ∈ C : Φ iz, yr1
i
Lemma 2.5see below shows that, for each 1 ≤ i ≤ m, T r i is firmly nonexpansive and hence nonexpansive and FixTr i EPΦi Suppose that F : H → H is a κ-Lipschitzian and
In this paper, motivated and inspired by the above research results, we introduce the following iterative process for finding an element inΩ: for an arbitrary initial point x1∈ H,
zn γ1Tr1xn γ2Tr2xn · · · γ mTr m xn,
i1
α i−1 − α i σ nTixn 1 − α n 1 − σ n T λ n zn, ∀n ≥ 1, 1.10
whereT λ n zn z n − λ nμFzn , α0 1, {α n}∞n1is a strictly decreasing sequence in0, α with
0< α < 1, {λ n}∞
n1 ⊂ 0, 1, {γ i}m
i1 ⊂ 0, 1 withm
i1 γ i 1, and {σ n}∞
n1 ⊂ a, b with 0 < a, b <
1 Then we prove that the iterative process {x n} defined by 1.10 strongly converge to an elementx∗∈ Ω, which is the unique solution of the variational inequality
Fx∗, x − x∗ ≥ 0, ∀x ∈ Ω. 1.11
As an application of our main result, we solve a multiobjective optimization problem
Trang 42 Preliminaries
For all x ∈ FixT and x ∈ H, we have
x − x2≥ Tx − T x2 Tx − x2 Tx − x x − x2
Tx − x2 x − x2 2Tx − x, x − x 2.1
and hence
Tx − x2≤ 2x − Tx, x − x, ∀x ∈ FixT, x ∈ H. 2.2
It is well known that, for allx, y ∈ H and t ∈ 0, 1,
tx 1 − ty2
≤ tx2 1 − ty2, 2.3 which implies that
n
i1
t i x i
2
≤n
i1
t i x i2 2.4
for all{x i}n i1 ⊂ H and {t i}n i1 ⊂ 0, 1 withn i1 ti 1
unique nearest point inC, denoted by P C x, such that
Moreover, we have the following:
We need the following lemmas for our main results
Lemma 2.1 see 15 Let C be a nonempty closed and convex subset of a Hilbert space H and T a
Trang 5Lemma 2.2 see 10, Lemma 3.1b Let H be a Hilbert space and T : H → H be a nonexpansive
Lemma 2.3 see 16 Let {sn }, {c n } be the sequences of nonnegative real numbers and {a n} ⊂
0, 1 Suppose that {b n } is a real number sequence such that
s n1 ≤ 1 − a n s n b n c n , ∀n ≥ 0. 2.9
(2) If
∞
n0
a n ∞, lim sup
n → ∞
bn
a n ≤ 0, 2.10 then lim n → ∞ s n 0.
Lemma 2.4 see 17 Let C be a nonempty closed and convex subset of a Hilbert space H and
Φ : C × C → R be a bifunction which satisfies the conditions (A1)–(A4) Let r > 0 and x ∈ H Then
Lemma 2.5 see 2 Let H be a Hilbert space and C be a nonempty closed and convex subset of H
T r x
r
Then the following holds:
1 T r is single-valued;
2 T r is firmly nonexpansive, that is, for any x, y ∈ H,
3 FixT r EPΦ;
4 EPΦ is closed and convex.
Trang 6The following lemma is an immediate consequence of an inner product.
Lemma 2.6 Let H be a real Hilbert space Then the following identity holds:
x y2
≤ x2 2y, x y, ∀x, y ∈ H. 2.14
3 Main Results
First, we prove some lemmas as follows
Lemma 3.1 The sequence {x n } generated by 1.10 is bounded.
firmly-nonexpansive and hence firmly-nonexpansive Hence, for each 1≤ i ≤ m and p ∈ Ω, we have
u in − p T r i xn − T r i p ≤ x n − p, ∀n ≥ 1, 3.1
z n − p ≤m
i1
γi u in − p ≤ x n − p, ∀n ≥ 1. 3.2
ByLemma 2.2, we have
whereτ 1 − 1− μ2η − μκ2 ∈ 0, 1 Therefore, by 3.2 and 3.3, we obtain note that {α n } is strictly decreasing and T λ n p − p −λnμFp
x n1 − p α n
x n − pn
i1
α i−1 − α i σ n
T i x n − p 1 − α n 1 − σ nT λ n z n − p
≤ α n x n − p n
i1
α i−1 − α i σ n T ixn − p 1 − α n 1 − σ nT λ n zn − p
≤ α n x n − p n
i1
α i−1 − α i σ n x n − p
1 − α n 1 − σ nT λ n zn − T λ n p T λ n p − p
≤ α n x n − p n
i1
α i−1 − α i σ n x n − p
1 − α n 1 − σ n1 − λ nτ z n − p λ n μ Fp
Trang 7≤ α n x n − p n
i1
α i−1 − α i σ n x n − p
1 − α n 1 − σ n1 − λ nτ x n − p λ nμ Fp
1 − 1 − α n 1 − σ n λ nτ x n − p 1 − α n 1 − σ n λ nμ Fp.
3.4
By induction, we obtainx n1 ≤ max{x1− p, μ/τFp} Hence {x n} is bounded and so are{z n } and {u in } for each i 1, 2, , m Since F is κ-Lipschitzian, we have
Fz n ≤Fz n − Fp Fp
≤ κz n − p Fp ≤ κz n κp Fp, 3.5
which shows that{Fz n} is bounded This completes the proof
Lemma 3.2 If the following conditions hold:
∞
n1
n1
|λ n − λ n1 | < ∞, ∞
n1
|σ n − σ n1 | < ∞, 3.6
then lim n → ∞ x n1 − x n 0.
u in−1 − u in T r i x n−1 − T r i x n ≤ x n−1 − x n , ∀n ≥ 1. 3.7
By3.7, we have
z n − z n−1 γ1u1n − u1n−1 γ2u2n − u2n−1 · · · γ m u mn − u mn−1
≤m
i1
γ i u in − u in−1 ≤m
i1
γ i x n − x n−1
x n−1 − x n , ∀n ≥ 1.
3.8
By the definition of the iterative sequence1.10, we have
xn1 − x n α n x n − x n−1 α nxn−1n
i1
α i−1 − α i σ n T ixn − T ixn−1
n
i1
α i−1 − α i σ nTixn−1 1 − α n 1 − σ nT λ n zn − T λ n zn−1
1 − α n 1 − σ n T λ n z n−1 − α n−1 x n−1−n−1
i1
α i−1 − α i σ n−1 T i x n−1
− 1 − α n−1 1 − σ n−1 T λ n−1 z n−1
Trang 8α n x n − x n−1 α n − α n−1 x n−1n
i1
α i−1 − α i σ n T ixn − T ixn−1
1 − α n 1 − σ nT λ n zn − T λ n zn−1n
i1
α i−1 − α i σ nTixn−1
−n−1
i1
α i−1 − α i σ n−1Tixn−1 1 − α n 1 − σ n T λ n zn−1
− 1 − α n−1 1 − σ n−1 T λ n−1 z n−1
α n x n − x n−1 α n − α n−1 x n−1n
i1
α i−1 − α i σ n T ixn − T ixn−1
1 − α n 1 − σ nT λ n z n − T λ n z n−1n−1
i1
α i−1 − α i σ n − σ n−1 T i x n−1
α n−1 − α n σ n T n x n−1 α n−1 − α n 1 − σ n σ n−1 − σ n 1 − α n−1 z n−1
{1 − α n−1 1 − σ n−1 λ n−1 − λ n
−α n−1 − α n 1 − σ n σ n−1 − σ n 1 − α n−1 λ n }μFz n−1 ,
3.9
and hence
x n1 − x n ≤ α n x n − x n−1 α n−1 − α n x n−1 n
i1
α i−1 − α i σ n x n − x n−1
1 − α n 1 − σ n 1 − λ nτzn − z n−1 n−1
i1
α i−1 − α i |σ n − σ n−1 |T i x n−1
α n−1 − α n T n x n−1 α n−1 − α n |σ n−1 − σ n |z n−1
|λ n−1 − λ n | α n−1 − α n |σ n−1 − σ n |μFz n−1
α n x n − x n−1 n
i1
α i−1 − α i σ n x n − x n−1
1 − α n 1 − σ n 1 − λ nτzn − z n−1
α n−1 − α nx n−1 T nxn−1 z n−1 μFz n−1
n−1
i1
α i−1 − α i |σ n − σ n−1 |T i x n−1 |σ n−1 − σ n|z n−1 μFz n−1
|λ n−1 − λ n |μFz n−1
3.10
Trang 9It follows from3.8 and 3.10 that
x n1 − x n ≤ α n x n − x n−1 n
i1
α i−1 − α i σ n x n − x n−1
1 − α n 1 − σ n 1 − λ nτxn−1 − x n
α n−1 − α nx n−1 T n x n−1 z n−1 μFz n−1
n−1
i1
α i−1 − α i |σ n − σ n−1 |T ixn−1 |σ n−1 − σ n|z n−1 μFz n−1
|λ n−1 − λ n |μFz n−1
≤ 1 − 1 − α n 1 − σ n λ nτxn − x n−1 α n−1 − α n3 μM
|σ n − σ n−1|2 μM |λn−1 − λ n |μM
≤ 1 − 1 − α1 − bλ nτxn − x n−1 α n−1 − α n3 μM
|σ n − σ n−1|2 μM |λn−1 − λ n |μM,
3.11
where M max{sup n≥1 x n , sup n≥1 z n , sup i≥1,n≥1 T ixn , sup n≥1 Fz n } Since {α n} is strictly decreasing, we have ∞
n2 α n−1 − α n α1 < ∞ Further, from the assumptions, it
follows that
∞
n2
Therefore, byLemma 2.3, we have limn → ∞ x n1 − x n 0 This completes the proof
Lemma 3.3 If the following conditions hold:
lim
n1
n1
|λ n − λ n1 | < ∞, ∞
n1
|σ n − σ n1 | < ∞, 3.13
then lim
n → ∞ x n − u in 0 for each i 1, 2, , m.
u in − p2 T r i x n − T r i p2≤ T r i x n − T r i p, x n − p u in − p, x n − p
1 2
u
in − p2x n − p2
− u in − x n2
Trang 10and henceu in − p2 ≤ x n − p2− u in − x n2 Further, we have
z n − p2
m
i1
γi u in − p
2
≤m
i1
γi u in − p2
≤m
i1
γ ix
n − p2
− u in − x n2
x n − p2−m
i1
γ i u in − x n2, ∀n ≥ 1.
3.15
Therefore, from2.4 and 3.3, we have
x n1 − p2
α n x n − p
n
i1
α i−1 − α i σ n T ixn − p 1 − α n 1 − σ n T λ n zn − p
2
≤ α n x n − p2n
i1
α i−1 − α i σ n T ixn − p2
1 − α n 1 − σ nT λ n zn − p2
≤ α n x n − p2 1 − α n σ n x n − p2
1 − α n 1 − σ nT λ n z n − T λ n p T λ n p − p2
≤ α n x n − p2
1 − α n σ n x n − p2
1 − α n 1 − σ n1 − λ n τ z n − p λ n μ Fp2
≤ α n x n − p2
1 − α n σ n x n − p2
1 − α n 1 − σ n
×1 − λ nτ z n − p2 2λ n 1 − λ nτμ z n − pFp λ n μ2Fp2
≤ α n x n − p2 1 − α n σ n x n − p2 1 − α n 1 − σ n
×
1 − λ nτ
x n − p2−m
i1
γ i u in − x n2
2λ n 1 − λ nτμ z n − pFp λ nμ2Fp2
1 − 1 − α n 1 − σ n λ nτ x n − p2
− 1 − α n 1 − σ n 1 − λ nτm
i1
γi u in − x n2
2λ nμ1 − αn 1 − σ n 1 − λ nτ z n − pFp 1 − α n 1 − σ n λ n μ2Fp2
Trang 11≤x n − p2
− 1 − α n 1 − σ n 1 − λ nτm
i1
γi u in − x n2
1 − α n 1 − σ n λ n μ2Fp2
2λ nμ1 − αn 1 − σ n 1 − λ nτ z n − pFp.
3.16
It follows that
γi 1 − α n 1 − σ n 1 − λ nτuin − x n2
≤x n − p x n1 − px n − x n1 λ nμ2Fp2 2μz n − pFp 3.17
for each i 1, 2, , m Note that 0 < γi < 1 for i 1, 2, , m From the assumptions,
Lemma 3.2, and the previous inequality, we conclude thatu in − x n → 0 as n → ∞ for
z n − x n ≤m
i1
γi u in − x n −→ 0 n −→ ∞. 3.18
This completes the proof
Lemma 3.4 If the following conditions hold:
lim
n1
n1
|λ n − λ n1 | < ∞, ∞
n1
|σ n − σ n1 | < ∞, 3.19
then lim n → ∞ x n − T ixn 0 for all i ≥ 1.
i1
α i−1 − α i σ n x n − T ixn − 1 − α n σ nxn α nxn 1 − α n 1 − σ n T λ n zn, 3.20
that is,
n
i1
α i−1 − α i σ n x n − T ixn x n − x n1 − x n α nxn 1 − α n σ nxn 1 − α n 1 − σ n T λ n zn
x n − x n1 1 − α n σ n − 1x n 1 − α n 1 − σ n T λ n z n
x n − x n1 1 − α n 1 − σ nT λ n z n − x n.
3.21
Trang 12Hence, for anyp ∈ Ω, we get
n
i1
α i−1 − α i σ n
xn − T ixn, xn − p 1 − α n 1 − σ n T λ n zn − x n, xn − p x n − x n1, xn − p.
3.22 Since eachTiis nonexpansive, by2.2, we have
T ixn − x n2≤ 2x n − T ixn, xn − p. 3.23 Hence, combining this inequality with3.22, we get
1
2
n
i1
α i−1 − α i σ n T ixn − x n2≤ 1 − α n 1 − σ n T λ n zn − x n, xn − p x n − x n1, xn − p,
3.24 which implies thatnote that {α n} is a strictly decreasing sequence
T i x n − x n2≤ 21 − αn 1 − σ n
α i−1 − α i σ n T λ n z n − x n , x n − p 2
α i−1 − α i σ n x n − x n1 , x n − p
≤ 21 − αn 1 − σ n
α i−1 − α i σ n
T λ n z n − x nxn − p 2
α i−1 − α i σ n x n − x n1xn − p.
3.25
FromLemma 3.3, limn → ∞ λ n 0, and the inequality
T λ n zn − x n ≤ z
n − x n λ nμFzn , 3.26
we obtain
lim
n → ∞
T λ n zn − x n 0. 3.27 Therefore, fromLemma 3.2,3.25, and 3.27, it follows that
lim
This completes the proof
Trang 13Next we prove the main results of this paper.
Theorem 3.5 Assume that the following conditions hold:
lim
n1
n1
|λ n − λ n1 | < ∞,
∞
n1 γ n − γ n1 < ∞, ∞
n1
|σ n − σ n1 | < ∞.
3.29
Fx∗, x∗− x ≥ 0, ∀x ∈ Ω. 3.30 First, we prove that
lim sup
Since{x n } is bounded, there exists a subsequence {x n j } of {x n} such that
lim sup
n → ∞ −Fx∗, x n − x∗ lim
Without loss of generality, we may further assume that xn j x for some x ∈ H From
Lemmas 3.4 and 2.1, we get x ∈ FixT n for all n ≥ 1 Hence we have x ∈ ∞n1FixTn
It follows from Lemma 2.5that each T r i is firmly nonexpansive and hence nonexpansive Lemma 3.3shows thatT r i xn − x n → 0 as n → ∞ Therefore, fromLemma 2.1, it follows that x ∈ FixT r i for each i 1, , m, which shows that x ∈ m i1FixTr i.Lemma 2.5shows that FixTr i EPΦi for each i 1, , m Hence x ∈ m
i1EPΦi By using the above argument, we conclude that
x ∈ Ω ∞
n1
FixTn ∩ EPΦ1 ∩ · · · ∩ EPΦm . 3.33
Noting thatx∗is a solution of the VIF, Ω, we obtain
lim sup
... Let C be a nonempty closed and convex subset of a Hilbert space H and T a Trang 5Lemma 2.2 see... class="text_page_counter">Trang 10
and henceu in − p2 ≤ x n − p2− u in...
Trang 7≤ α n x n − p n
i1