1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article A Note on the Integral Inequalities with Two Dependent Limits" ppt

18 364 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 511,19 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2010, Article ID 430512, 18 pagesdoi:10.1155/2010/430512 Research Article A Note on the Integral Inequalities with Two Dependent Limits 1 Department of Mathematics, Fatih Universi

Trang 1

Volume 2010, Article ID 430512, 18 pages

doi:10.1155/2010/430512

Research Article

A Note on the Integral Inequalities with

Two Dependent Limits

1 Department of Mathematics, Fatih University, Buyukcekmece, 34500 Istanbul, Turkey

2 Department of Mathematics, ITTU, 74200 Ashgabat, Turkmenistan

3 Department of Mathematics, Ege University, 35100 Bornova-Izmir, Turkey

Correspondence should be addressed to Emine Misirli,emine.misirli@gmail.com

Received 4 October 2009; Revised 28 April 2010; Accepted 5 July 2010

Academic Editor: Martin Bohner

Copyrightq 2010 Allaberen Ashyralyev et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

The theorem on the Gronwall’s type integral inequalities with two dependent limits is established

In application, the boundedness of the solutions of nonlinear differential equations is presented

1 Introduction

Integral inequalities play a significant role in the study of qualitative properties of solutions

of integral, differential and integro-differential equations see, e.g., 1 4 and the references given therein One of the most useful inequalities in the development of the theory of differential equations is given in the following lemma see 5

Lemma 1.1 Let ut and ft be real-valued nonnegative continuous functions for all t ≥ 0 If

u2t ≤ c2 2

t

0

f susds 1.1

for all t ≥ 0, where c ≥ 0 is a real constant, then

u t ≤ c 

t

0

for all t ≥ 0.

Trang 2

2 Journal of Inequalities and Applications

Note that the generalization of this integral inequality and its discrete analogies are given in papers5 8 In paper 9 the following useful inequality with two dependent limits was established

Lemma 1.2 Let ut be a real-valued nonnegative continuous function defined on −T, T and let c

and a be nonnegative constants Then the inequality

u t ≤ c  sgnt

t

−t au sds, −T ≤ t ≤ T 1.3

implies that

u t ≤ ce 2a|t| , −T ≤ t ≤ T. 1.4

The theory of integral inequalities with several dependent limits and its applications

to differential equations has been investigated in 10–14

The present study involves some Gronwall’s type integral inequalities with two dependent limits.Section 2includes some new integral inequalities with two dependent lim-its and relevant proofs Subsequently,Section 3includes an application on the boundedness

of the solutions of nonlinear differential equations

2 A Main Statement

Our main statement is given by the following theorem

Theorem 2.1 Let ut, at, bt, gt, ht, and mt be real-valued nonnegative continuous

(i) Let c be a nonnegative constant If

u2t ≤ c2 2 sgnt

t

−t m susds 2.1

for t ∈ R, then

u t ≤ c  sgnt

t

−t m sds 2.2

for all t ∈ R.

(ii) Let p > 1 be a real constant If

u p t ≤ at  bt sgnt

t

−t



g su p s  hsusds 2.3

Trang 3

for t ∈ R, then

u t ≤



a t  bt exp

 sgnt

t

−t b r



g r 1

p h r



dr

× sgnt

t

−t a s



g s  1

p h s



p− 1

× exp − sgns

s

−s b r



g r 1

p h r



dr

ds

1/p

2.4

for all t ∈ R.

(iii) Let c t be a real-valued positive continuous and nondecreasing function defined on R and

p > 1 be a real constant If

u p t ≤ c p t  bt sgnt

t

−t



g su p s  hsusds 2.5

for t ∈ R, then

u t ≤ ct



1 bt exp

 sgnt

t

−t b r g r  hr c1−pr

p



dr

× sgnt

t

−t



g s  hsc1−ps

× exp



− sgns

s

−s b r g r  hr c1−pr

p



dr

ds

1/p

2.6

for all t ∈ R.

(iv) Let k t, s and its partial derivative ∂kt, s/∂t be real-valued nonnegative continuous

functions on −∞ < s ≤ t < ∞ and let kt, s be even function in t If

u p t ≤ at  bt sgnt

t

−t k t, sg su p s  hsusds 2.7

for t ∈ R, then

u t ≤



a t  bt exp

 sgnt

t

−t k r, rbr



g r 1

p h r



dr

×



sgnt

t

0

sgns

s

−s

∂s k s, r



a r



g r 1

p h r



p− 1



dr

× exp − sgns

s

−s k r, rbr



g r 1

p h r



dr

Trang 4

4 Journal of Inequalities and Applications

× exp sgnt

t

s

sgnr

r

−r

∂r k



r, y

b

g

y

1

p h



dy dr



ds

 sgnt

t

−t k s, s exp



− sgns

s

−s k r, rbr



g r 1

p h r



dr



×



a s



g s  1

p h s



 p− 1



B k t, sds

1/p

.

2.8

for all t ∈ R Here

B k t, s 

B kt, s, t ≥ 0, s ∈ R,

B kt, s, t ≤ 0, s ∈ R, 2.9

where

B kt, s 

exp

t s

r

−r

∂r k



r, y

B

y

dy dr



, t ≤ s ≤ 0,

exp

t

−s

r

−r

∂r k



r, y

B

y

dy dr



, 0≤ s ≤ −t,

2.10

B kt, s 

exp

t s

r

−r

∂r k



r, y

B

y

dy dr



, 0≤ s ≤ t,

exp

t

−s

r

−r

∂r k



r, y

B

y

dy dr



, −t ≤ s ≤ 0.

2.11

v t  c2 2 sgnt

t

−t m susds. 2.12

Note that vt is a nonnegative function and v0  c2 Then2.1 can be rewritten as

u2t ≤ vt, u t ≤v t. 2.13

It is easy to see that vt is an even function.

Trang 5

First, let t≥ 0; then 2.12 can be rewritten as

v t  c2 2

t

−t m susds. 2.14 Differentiating 2.14 and using 2.13, we get

vt ≤ 2mtv t  2m−tv t. 2.15

Dividing both sides of2.15 by 2v t, we get

vt

2

v t ≤ mt  m−t. 2.16

Integrating the last inequality from 0 to t, we get



v t ≤ c 

t

0

m sds 

t

0

m −sds  c  sgnt

t

−t m sds. 2.17

Second, let t≤ 0 Then, 2.12 can be written as

v t  c2− 2

t

−t m susds. 2.18 Differentiating 2.18 and using 2.13, we get

−vt ≤ 2mtv t  2m−tv t. 2.19 Dividing both sides of2.19 by 2v t, we get

vt

2

v t ≤ mt  m−t. 2.20 Integrating2.20 from t to 0, we get



v t ≤ c 

0

t

m sds 

0

t

m −sds  c  sgnt

t

−t m sds. 2.21

Trang 6

6 Journal of Inequalities and Applications

Finally, using2.17 and 2.21, we obtain



v t ≤ c  sgnt

t

−t m sds. 2.22

The inequality2.2 follows from 2.13 and 2.22

ii Define a function vt by

v t  sgnt

t

−t



g su p s  hsusds. 2.23

It is evident that vt is an even and nonnegative function We have that

u p t ≤ at  btvt, u t ≤ at  btvt 1/p 2.24 Using Young’s inequalitysee, e.g., 2, we obtain that

u t ≤ a t  btvt

Let t≥ 0 Then

v t 

t

−t g su p s  hsusds. 2.26 Differentiating 2.26, we get

vt  gtu p t  htut  g−tu p −t  h−tu−t. 2.27 Using2.24 and 2.25, we get

vt ≤ vt b t



g t  1

p h t



 b−t



g −t  1

p h −t



 at



g t 1

p h t



 a−t



g −t  1

p h −t



p− 1

p ht  h−t.

2.28

Denoting

B t  bt



g t  1

p h t



, A t  at



g t  1

p h t



 p− 1

p h t, 2.29

we get

vt − vtBt  B−t ≤ At  A−t. 2.30

Trang 7

From that it follows that

exp

t s

Br  B−rdr





vs − vsBs  B−s

≤ exp t

s

Br  B−rdr



As  A−s

2.31

for any s ≤ t Integrating the last inequality from 0 to t and using v0  0, we get

v t ≤

t

0

As  A−s exp t

s

Br  B−rdr



ds. 2.32

It is easy to see that

t

s

Br  B−rdr 

t

−t B rdr −

s

−s B rdr. 2.33 Then

v t ≤ exp t

−t B rdr

 t

0

As  A−s exp



s

−s B rdr



ds. 2.34

Since 0≤ s ≤ t, we have that

v t ≤ exp sgnt

t

−t B rdr



×

t

0

A s exp



s

−s B rdr



0

−t A s exp



−s

s

B rdr



ds

 exp sgnt

t

−t B rdr



×

t

0

A s exp



− sgns

s

−s B rdr



0

−t A s exp



− sgns

s

−s B rdr



ds

 exp sgnt

t

−t B rdr

 sgnt

t

−t A s exp



− sgns

s

−s B rdr



.

2.35

Trang 8

8 Journal of Inequalities and Applications

Applying2.24, we obtain

u t ≤



a t  bt exp sgnt

t

−t B rdr



× sgnt

t

−t A s exp



− sgns

s

−s B rdr



ds

1/p

.

2.36

From2.36, and 2.29 it follows 2.4 for t ≥ 0 Let t ≤ 0; then

v t  −

t

−t



g su p s  hsusds,

−vt  gtu p t  htut  g−tu p −t  h−tu−t.

2.37

Using2.24 and 2.25, we get

−vt ≤ vtBt  B−t  At  A−t. 2.38 From that it follows that

− exp

s

t

Br  B−rdr

vs  vsBs  B−s

≤ exps

t

Br  B−rdr



As  A−s

2.39

for any t ≤ s Integrating the last inequality from t to 0 and using v0  0, we get

v t ≤

0

t

As  A−s exp

s t

Br  B−rdr



ds. 2.40

It is easy to see that

s

t

Br  B−rdr 

−t

t

B rdr −

−s

s

B rdr. 2.41

Then

v t ≤ exp −t

t

B rdr

 0

t

As  A−s exp



−s

s

B rdr



ds. 2.42

Trang 9

Since t ≤ s ≤ 0, we have that

v t ≤ exp sgnt

t

−t B rdr

0

t

As  A−s exp



−s

s

B rdr



ds

 exp sgnt

t

−t B rdr



×

0

t

A s exp

s

−s B rdr



0

t

A −s exp

s

−s B rdr



ds

 exp sgnt

t

−t B rdr



×

0

t

A s exp

s

−s B rdr



−t

0

A s exp

−s

s

B rdr



ds

 exp sgnt

t

−t B rdr

 −t

t

A s exp



− sgns

s

−s B rdrds



 exp sgnt

t

−t B rdr

 sgnt

t

−t A s exp



− sgns

s

−s B rdr



ds.

2.43

Applying2.43 and 2.24, we obtain 2.36 for t ≤ 0 Then from 2.36 and 2.29, 2.4

follows for t ≤ 0.

iii Since ct is a positive, continuous, and nondecreasing function for t ∈ R, we have

that



u t

c t

p

≤ 1  bt sgnt

t

−t g s



u s

c s

p

 hsc1−ps u s

c s

ds. 2.44

Now the application of the inequality proven inii yields the desired result in 2.6

iv We define a function vt by

v t  sgnt

t

−t k t, sg su p s  hsusds. 2.45

Evidently, the function vt is a nonnegative, monotonic, and nondecreasing in t and v0  0.

We have that

u p t ≤ at  btvt, u t ≤ at  btvt 1/p 2.46

Trang 10

10 Journal of Inequalities and Applications

Let t≥ 0 Then

v t 

t

−t k t, sg su p s  hsusds. 2.47 Differentiating 2.47, we get

vt  kt, tg tu p t  htut kt, −tg −tu p −t  h−tu−t



t

−t

∂t k t, sg su p s  hsusds.

2.48

Using2.46 and Young’s inequality, we obtain that

vt ≤ vt k t, tbt



g t  1

p h t



 kt, −tb−t



g −t  1

p h −t





t

−t

∂t k t, sbs



g s  1

p h s



ds

 kt, t g tat  ht

 1

p a t  p− 1

p



 kt, −t g −ta−t  h−t

 1

p a −t  p− 1

p





t

−t

∂t k t, s g sas  hs

 1

p a s  p− 1

p



ds.

2.49

Using2.29, we get

vt ≤ vt k t, tBt  kt, −tB−t 

t

−t

∂t k t, sBsds



 kt, tAt  kt, −tA−t 

t

−t

∂t k t, sAsds.

2.50

Applying the differential inequality, we get

v t ≤

t

0



k s, sAs  ks, −sA−s 

s

−s

∂s k s, rArdr



× exp

t s



k r, rBr  kr, −rB−r 

r

−r

∂r k



r, y

B

y

dy



dr

.

2.51

Trang 11

Since kt, s  k−t, s, we have that

v t ≤

t

0



k s, sAs  k−s, −sA−s 

s

−s

∂s k s, rArdr



× exp

t s



k r, rBr  k−r, −rB−r 

r

−r

∂r k



r, y

B

y

dy



dr

ds.

2.52

Using2.33, we get

v t ≤ exp t

−t k r, rBrdr



×

t

0

s

−s

∂s k s, rArdr

× exp −

s

−s k r, rBrdr 

t

s

r

−r

∂r k



r, y

B

y

dy dr



ds



t

0

k s, sAs exp

s

−s k r, rBrdr 

t

s

r

−r

∂r k



r, y

B

y

dy dr



ds



t

0

k −s, −sA−sexp

s

−s k r, rBrdr ds 

t

s

r

−r

∂r k



r, y

B

y

dy dr



ds

.

2.53 Since 0≤ s ≤ t, we have that

v t ≤ exp sgnt

t

−t k r, rBrdr



×



sgnt

t

0

sgns

s

−s

∂s k s, rArdr

× exp −

s

−s k r, rBrdr 

t

s

r

−r

∂r k



r, y

B

y

dy dr



ds



t

0

k s, sAs exp

s

−s k r, rBrdr 

t

s

r

−r

∂r k



r, y

B

y

dy dr



ds



0

−t k s, sAs exp

−s

s

k r, rBrdr 

t

−s

r

−r

∂r k



r, y

B

y

dy dr



ds

.

2.54

Trang 12

12 Journal of Inequalities and Applications

Using2.9 and 2.11, we get

v t ≤ exp sgnt

t

−t k r, rBrdr



×



sgnt

t

0

sgns

s

−s

∂s k s, rArdr

× exp − sgns

s

−s k r, rBrdr  sgnt

t

s

sgnr

r

−r

∂r k



r, y

B

y

dy dr



ds



t

0

k s, sAs exp



− sgns

s

−s k r, rBrdr



B kt, sds



0

−t k s, sAs exp



− sgns

s

−s k r, rBrdr



B kt, sds

 exp sgnt

t

−t k r, rBrdr



×



sgnt

t

0

sgns

s

−s

∂s k s, rArdr

× exp − sgns

s

−s k r, rBrdr  sgnt

t

s

sgnr

r

−r

∂r k



r, y

B

y

dy dr



ds

 sgnt

0

−t k s, s exp



− sgns

s

−s k r, rBrdr



A sB k t, sds

.

2.55

Let t≤ 0 Then

v t  −

t

−t k t, sg su p s  hsusds. 2.56 Differentiating 2.56, we get

−vt  kt, tg tu p t  htut kt, −tg −tu p −t  h−tu−t



t

−t

∂t k t, sg su p s  hsusds.

2.57

Trang 13

Using2.46 and Young’s inequality, we obtain that

−vt ≤ vt k t, tbt



g t  1

p h t



 kt, −tb−t



g −t  1

p h −t





t

−t

∂t k t, sbs



g s  1

p h s



ds

 kt, t g tat  ht

 1

p a t  p− 1

p



 kt, −t g −ta−t  h−t

 1

p a −t  p− 1

p





−t

t

∂t k t, s g sas  hs

 1

p h s  p− 1

p



ds.

2.58

Using2.29, we get

−vt ≤ vt k t, tBt  kt, −tB−t 

−t

t

∂t k t, sBsds



 kt, tAt  kt, −tA−t 

−t

t

∂t k t, sAsds.

2.59

Applying the differential inequality, we get

v t ≤

0

t



k s, sAs  ks, −sA−s 

−s

s

∂s k s, rArdr



× exp s

t



k r, rBr  kr, −rB−r 

−r

r

∂r k



r, y

B

y

dy



dr

ds.

2.60

Since kt, s  k−t, s, we have that

v t ≤

0

t



k s, sAs  k−s, −sA−s 

−s

s

∂s k s, rArdr



× exp s

t



k r, rBr  k−r, −rB−r 

−r

r

∂r k



r, y

B

y

dy



dr

ds.

2.61

Trang 14

14 Journal of Inequalities and Applications

Using2.41, we get

v t ≤ exp −t

t

k r, rBrdr



×

0

t

−s

s

∂s k s, rArdr

× exp



−s

s

k r, rBrdr 

s

t

−r

r

∂r k



r, y

B

y

dy dr



ds



0

t

k s, sAs exp



−s

s

k r, rBrdr 

s

t

−r

r

∂r k



r, y

B

y

dy dr



ds



0

t

k −s, −sA−s exp



−s

s

k r, rBrdr



ds

s

t

−r

r

∂r k



r, y

B

y

dy dr ds

.

2.62

Since t ≤ s ≤ 0, we have that

v t ≤ exp sgnt

t

−t k r, rBrdr



×



sgnt

t

0

sgns

s

−s

∂s k s, rArdr

× exp



− sgns

s

−s k r, rBrdr 

s

t

−r

r

∂r k



r, y

B

y

dy dr



ds



0

t

k s, sAs exp



−s

s

k r, rBrdr 

s

t

−r

r

∂r k



r, y

B

y

dy dr



ds



−t

0

k s, sAs exp



s

−s k r, rBrdr 

−s

t

−r

r

∂r k



r, y

B

y

dy dr



ds

.

2.63 Using2.9 and 2.10, we get

v t ≤ exp sgnt

t

−t k r, rBrdr



×



sgnt

t

0

sgns

s

−s

∂s k s, rArdr

× exp − sgns

s

−s k r, rBrdr  sgnt

t

s

sgnr

r

−r

∂r k



r, y

B

y

dy dr



ds



0

t

k s, sAs exp



− sgns

s

−s k r, rBrdr



B kt, sds



−t

0

k s, sAs exp



− sgns

s

−s k r, rBrdr



B kt, sds

Trang 15

 exp sgnt

t

−t k r, rBrdr



×



sgnt

t

0

sgns

s

−s

∂s k s, rArdr

× exp − sgns

s

−s k r, rBrdr  sgnt

t

s

sgnr

×

r

−r

∂r k



r, y

B

y

dy dr



ds

 sgnt

−t

0

k s, s exp



− sgns

s

−s k r, rBrdr



A sB k t, sds

.

2.64 The inequality2.8 follows from 2.29, 2.55, and 2.64.Theorem 2.1is proved

3 An Application

In this section, we indicate an application of Theorem 2.1part ii to obtain the explicit bound on the solution of the following boundary value problem for one dimensional partial differential equations:

v tt p t, x −a xv p

x t, x

x  δv p t, x  Ft, x; vt, x, t ∈ R, 0 < x < l,

v t, 0  vt, l, v x t, 0  v x t, l, t ∈ R,

v 0, x  ϕx, v t 0, x  ψx, 0 ≤ x ≤ l,

3.1

where p > 1 is a fixed real number and δ  const > 0 Let Ft, x; vt, x, t ∈ R, x ∈ 0, l,

a x ≥ a > 0, x ∈ 0, l, ϕx, ψx, x ∈ 0, l be smooth functions and problem 3.1 has a

unique smooth solution vt, x Assume that

l

0

F2t, x; vt, xdx

1/2

≤ gt l

0

v 2p t, xdx

1/2

 ht l

0

v2t, xdx

1/2

3.2

for all t ∈ R Here gt and ht are real-valued nonnegative continuous functions defined on

R

This allows us to reduce the nonlocal boundary-value3.1 to the initial-value problem

v tt p t  Av p t  Ft, vt, t ∈ R,

v 0  ϕ, v t 0  ψ 3.3

...

−t m sds. 2.21

Trang 6

6 Journal of Inequalities and Applications

Finally,...

2.54

Trang 12

12 Journal of Inequalities and Applications

Using2.9 and 2.11, we get

v...

ds.

2.61

Trang 14

14 Journal of Inequalities and Applications

Using2.41, we get

v

Ngày đăng: 21/06/2014, 07:20

TỪ KHÓA LIÊN QUAN