Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001001 Câu 1 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề nào dưới đây đúng? A Hàm[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001001 Câu 1 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; −3) B Hàm số nghịch biến trên khoảng (−3; 1).
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng (−3; 1).
Câu 2 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 3 Tìm nghiệm của phương trình 2x = (√3)x
Câu 4 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 5 Cho hình lập phương ABCD.A′
B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′
D′
A. a
3
a3
a3
a3
3.
Câu 6 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(0; −1; 2) B I(0; 1; −2) C I(1; 1; 2) D I(0; 1; 2).
Câu 7 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1
3.
C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 D (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1
3.
Câu 8 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?
Câu 9 Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai vectơ pháp tuyến là−→nP và
−→
nQ Biết cosin góc giữa hai vectơ−→nP và−n→Qbằng −
√ 3
2 Góc giữa hai mặt phẳng (P) và (Q) bằng.
Câu 10 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là
A x5+ sin x + C B 5x5+ sin x + C C x5− sin x+ C D 5x5− sin x+ C
Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?
A (P) cắt mặt cầu (S ) B (P) đi qua tâm mặt cầu (S ).
C (P) không cắt mặt cầu (S ) D (P) tiếp xúc mặt cầu (S ).
Câu 12 Cho khối lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 3
3 a Tính thể tích của khối lăng trụ ABC.A
′B′C′
A. a
3
a3√ 2
a3√ 2
a3
2.
Trang 2Câu 13 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
A (2x+ 1)−
1
3(2x+ 1)−
4
3
C −1
3(2x+ 1)−
4
1
3 ln(2x+ 1)
Câu 14 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là
Câu 15 Cho hàm số y = f (x) xác định trên tập R và có f′
(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?
A Hàm số đã cho nghịch biến trên khoảng (1; 4).
B Hàm số đã cho nghịch biến trên khoảng (3;+∞)
C Hàm số đã cho đồng biến trên khoảng (−∞; 3).
D Hàm số đã cho đồng biến trên khoảng (1; 4).
Câu 16 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 17 Căn bậc hai của -4 trong tập số phức là.
A 2 hoặc -2 B 2i hoặc -2i C không tồn tại D 4i.
Câu 18 Gọi z1, z2là hai nghiệm phức của phương trình 2(1+i)z2−4(2−i)z−5−3i= 0 TổngT = |z1|2+|z2|2
bằng bao nhiêu?
A T =
√
13
4 .
Câu 19 Biết z= 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?
A −7
3
3
7
4.
Câu 20 Tìm tất cả các giá trị thực của tham số m để phương trình mz2+ 2mz − 3(m − 1) = 0 không có nghiệm thực là
A 0 ≤ m < 3
4. B 0 < m <
3
4. C m ≥ 0. D m < 0 hoặc m >
3
4.
Câu 21 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?
Câu 22 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?
A z2− (1+ 4i)z + 9 − 7i = 0 B z2− (5 − 2i)z+ 9 − 7i = 0
C z2+ (5 − 2i)z − 9 + 7i = 0 D z2+ (1 + 4i)z − 9 + 7i = 0
Câu 23 Phương trình (2 − i)z+ 3(1 + iz) = 7 + 8i có nghiệm là
Câu 24 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
Câu 25 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?
A |w|= √73 B |w|= 5 C |w|= √5 D |w|= 3√5
Câu 26 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 11
1
Trang 3Câu 27 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 28 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= −1
x2 B F′(x)= 2
x.
Câu 29 NếuR02 f(x)= 4 thì R2
0[1
2f(x) − 2] bằng
Câu 30 Phần ảo của số phức z= 2 − 3i là
Câu 31 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)
Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 32 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= 1
3.
Câu 33 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 34 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 2 B |w|min= 3
2. C |w|min = 1
2. D |w|min = 1
Câu 35 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 3
1
2 < |z| < 3
2. D |z| <
1
2.
Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 37 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8
3.
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
Câu 38 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
A |A| ≤ 1 B |A| > 1 C |A| ≥ 1 D |A| < 1.
Câu 39 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 4√13 B T = 2
√ 97
√ 85
Trang 4Câu 41 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 42 Cho a, b, c là các số thực và z= −1
2 +
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
C a2+ b2+ c2+ ab + bc + ca D a2+ b2+ c2− ab − bc − ca
Câu 43 Cho hàm số y= f (x) có đạo hàm f′
(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng
Câu 44 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln x C y′ = x.2023x−1 D y′ = 2023x
ln 2023
Câu 45 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
2(2x)
1
2(x
2+ 1)
1
4x
−1
1
2
Câu 46 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=
a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và
BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)
Câu 47 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi
có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 48 Với a là số thực dương tùy ý, log5(5a) bằng
Câu 49 Đường thẳng (∆) : x −1
−1 không đi qua điểm nào dưới đây?
A A(−1; 2; 0) B (3; −1; −1) C (−1; −3; 1) D (1; −2; 0).
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(2; −6; 4) B M(−2; 6; −4) C M(5; 5; 0) D M(−2; −6; 4).
HẾT