Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A = a[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 2 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với
cạnh huyền bằng 2a Tính thể tích của khối nón
A. 4π
√
2.a3
π√2.a3
2π.a3
π.a3
3 .
Câu 3 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)
A f (−1)= −5 B f (−1)= 3 C f (−1)= −3 D f (−1)= −1
Câu 4 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
A (0;1
1
Câu 5 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 6 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1
2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d
A (P) : x − y − 2z = 0 B (P) : x + y + 2z = 0 C (P) : x − 2y − 2 = 0 D (P) : x − y + 2z = 0.
Câu 7 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(ab2)= ln a + 2 ln b B ln(ab2)= ln a + (ln b)2
C ln(a
b)= ln a
Câu 8 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
6.
Câu 9 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng
Câu 10 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 11 Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng
Câu 12 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2
d2 : x −4
−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng
1
√
3
√
5.
Câu 13 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn
phương án dưới đây Hỏi hàm số đó là hàm số nào?
Trang 2Câu 14 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích
toàn phần St p của hình nón đó
A St p = 5
4πa2 D St p = 1
4πa2
Câu 15 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?
A f (x)= 3 cos 3x B f (x)= cos 3x
3 . C f (x)= −cos 3x
3 . D f (x)= −3 cos 3x
Câu 16 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a
√ 2
2 Tính góc giữa mặt bên (S DC) và mặt đáy
Câu 17 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?
A Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm
B Phương trình đã cho có tích hai nghiệm bằng c
a.
C Phương trình đã cho có tổng hai nghiệm bằng −b
a .
D Phương trình đã cho luôn có nghiệm.
Câu 18 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?
Câu 19 Phương trình (2 − i)z+ 3(1 + iz) = 7 + 8i có nghiệm là
Câu 20 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
Câu 21 Gọi z1, z2là hai nghiệm phức của phương trình 2(1+i)z2−4(2−i)z−5−3i= 0 TổngT = |z1|2+|z2|2
bằng bao nhiêu?
√ 13
2 .
Câu 22 Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2+ bz + c = 0 (với
a, b ∈ R ) Khi đó tổng a + b + c bằng bao nhiêu?
Câu 23 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?
A z2− (5 − 2i)z+ 9 − 7i = 0 B z2+ (5 − 2i)z − 9 + 7i = 0
C z2+ (1 + 4i)z − 9 + 7i = 0 D z2− (1+ 4i)z + 9 − 7i = 0
Câu 24 Biết z0 là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 20 = 0 Trên mặt phẳng tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w= (1 + i)z0− 2z0 ?
Câu 25 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?
A |w|= √73 B |w|= 5 C |w|= 3√5 D |w|= √5
Câu 26 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 27 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Trang 3Câu 28 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 29 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n4= (1; 1; −1) B.→−n3 = (1; 1; 1) C.→−n1 = (−1; 1; 1) D.→−n2 = (1; −1; 1)
Câu 30 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 31 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 32 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
3
4.
Câu 33 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; 2; −3) B (1; −2; 3) C (−1; −2; −3) D (−1; 2; 3).
Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 35 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 1
2 < |z| < 2 B. 5
2 < |z| < 4 C. 3
2 < |z| < 3 D 3 < |z| < 5.
Câu 36 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
Câu 37 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 38 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 3
√ 6
√ 2
√ 2
√ 5
5 .
Câu 39 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
1
2.
Câu 40 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 3
1
1
2 < |z| < 3
2.
Trang 4Câu 41 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3.
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1
Câu 42 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
Câu 43 Với a là số thực dương tùy ý, log5(5a) bằng
A 1 − log5a B 1+ log5a C 5 − log5a D 5+ log5a
Câu 44 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i= 0 Tính S = 2a + 3b
Câu 45 Cho hàm số y= f (x) có đạo hàm f′
(x)= x2
− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng
Câu 46 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho
3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất
A M(−3
4;
1
3
4;
1
3
4;
1
3
4;
3
2; −1).
Câu 47 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
2(2x)
1
1
4x
−1
2(x
2+ 1)
1
2
Câu 48 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M
Câu 49 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 50 Biết
3
R
2
f(x)dx= 3 vàR3
2
g(x)dx= 1 Khi đóR3
2
[ f (x)+ g(x)]dx bằng
HẾT