1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (508)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 121,19 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước Người ta thả vào đ[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước Người ta thả vào đó một

khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π

(dm3) Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm

trong nước Tính thể tích nước còn lại trong bình

A 12π(dm3) B 6π(dm3) C 24π(dm3) D 54π(dm3)

Câu 2 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; 1).

Độ dài đường cao AH của tứ diện ABCD là:

Câu 3 Tứ diện OABC có OA= OB = OC = a và đôi một vuông góc Gọi M, N, P lần lượt là trung điểm

AB, BC, CA Thể tích tứ diện OMNP là

A. a

3

a3

a3

a3

12.

Câu 4 Nguyên hàm F(x) của hàm số f (x)= 2x2+ x3− 4 thỏa mãn điều kiện F(0)= 0 là

A x3− x4+ 2x B. 2

3x

3+ x4

3x

3+ x4

4 − 4x.

Câu 5 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường

tròn nội tiếp tam giác ABC bằng

Câu 6 Cho tam giác ABC vuông tại A, AB = a, BC = 2a Tính thể tích khối nón nhận được khi quay

tam giác ABC quanh trục AB

3

3

Câu 7 Tính thể tích khối tròn xoay khi quay xung quanh trục hoành hình phẳng giới hạn bởi các đường

y= 1

x, x= 1, x = 2 và trục hoành

A V = π

5 .

Câu 8 Họ nguyên hàm của hàm số y= (x − 1)ex

là:

A (x − 2)ex+ C B (x − 1)ex+ C C xex+ C D xex−1+ C

Câu 9 Hàm số y= (x + m)3+ (x + n)3− x3đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu

thức P= 4(m2+ n2) − m − n bằng

1

4 .

Câu 10 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(−3

4;

1

3

4;

1

3

4;

1

3

4;

3

2; −1).

Câu 11 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= 1 và x = −1 B y= 2 và x = 1 C y= 1 và x = 2 D y= −1 và x = 2

Câu 12 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính

xác suất sao cho có ít nhất một quả màu trắng

A. 209

8

1

1

21.

Trang 2

Câu 13 Cho hàm số y= f (x) có bảng biến thiên như sau :

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 14 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

Câu 15 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 16 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ

Câu 17 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 18 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

2

√ 3

√ 3

Câu 19 Cho hàm số y= ax +b

cx +d có đồ thị là đường cong trong hình bên Tọa độ giao điểm của đồ thị hàm

số đã cho và trục hoành là

Câu 20 Trong không gian Oxyz, cho đường thẳng d : x−1

2 = y−2

−1 = z +3

−2 Điểm nào dưới đây thuộc d?

A P(1; 2; 3) B M(2; −1; −2) C N(2; 1; 2) D Q(1; 2; −3).

Câu 21 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (−1; −2; −3) B (1; 2; 3) C (−2; −4; −6) D (2; 4; 6).

Câu 22 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên) Thể tích khối chóp đã cho bằng

Câu 23 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

Câu 24 NếuR4

−1 f(x)dx= 2 và R4

−1g(x)dx= 3 thì R4

−1[ f (x)+ g(x)]dx bằng

Câu 25 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 26 Cho khối lăng trụ đứng ABC · A

B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

A.

2

4 a

√ 2

6 a

√ 2

2 a

3

Câu 27 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= −1

x2 B F′(x)= 1

′(x)= 2

x2 D F′(x)= lnx

Câu 28 NếuR4

−1 f(x)= 2 và R4

−1g(x)= 3 thì R4

−1[ f (x)+ g(x)] bằng

Trang 3

Câu 29 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 30 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 31 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= − 1

′ = 1

′ = 1

′ = ln3

x .

Câu 32 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1

2 Giá trị của u3bằng

1

1

4.

Câu 33 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

2 + C

2 + C

Câu 34 Cho hàm số y = f (x) liên tục trên R và lim

x→ +∞y= 3 Trong các khẳng định sau, khẳng định nào luôn đúng?

A Đường thẳng x= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)

B Đường thẳng x= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)

C Đường thẳng y= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)

D Đường thẳng y= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)

Câu 35 Trong các hình dưới đây, có bao nhiêu hình đa diện?

Câu 36 Hình đa diện dưới đây có bao nhiêu cạnh?

Câu 37 Cho hàm số y= −x4− x2+ 1 Trong các khẳng định sau, khẳng định nào sai?

A Đồ thị hàm số có một điểm cực đại B Điểm cực tiểu của hàm số là (0; 1).

C Đồ thị hàm số không có tiệm cận D Đồ thị hàm số cắt trục tung tại điểm (0; 1) Câu 38 Cho hàm số y= 2x − 3

−x+ 2 Trong các khẳng định sau, khẳng định nào đúng?

A Hàm số đồng biến trên khoảng (2;+∞) B Hàm số đồng biến trên khoảng (−2; 2).

C Hàm số đồng biến trên khoảng (−2;+∞) D Hàm số đồng biến trên tập xác định của nó.

Trang 4

Câu 39 Cho hàm số y= x+ 1

3 − x Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].

Câu 40 Cho hàm số y= x3− 3x2− 9x − 5 Trong các khẳng định sau, khẳng định nào sai?

A Giá trị cực đại của hàm số là 0.

B Hàm số có hai điểm cực trị.

C Giá trị cực tiểu của hàm số là 3.

D Hàm số có một điểm cực đại và một điểm cực tiểu.

Câu 41 Trong các mệnh đề sau, mệnh đề nào đúng?

A Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.

B Hai khối chóp có thể tích bằng nhau thì bằng nhau.

C Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.

D Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.

Câu 42 Cho hàm số y= f (x) có bảng biến thiên như sau:

x

y′ y

−2

−∞

+∞

−2

Đồ thị hàm số y= f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

Câu 43 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây

Câu 44 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 45 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 46 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 33π

32π

31π

5 .

Câu 47 Hàm số nào trong các hàm số sau đồng biến trên R.

x+ 2 .

Câu 48 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A. 1

4ln 2+ 3π

2 . B ln 2+ 6π

1

5ln 2+ 6π

5 .

Câu 49 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)

Trang 5

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi

qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)

A.

x= 1 + 2t

y= −2 + 3t

z= 4 − 5t

x= 1 + 2t

y= −2 − 3t

z= 4 − 5t

x= 1 − 2t

y= −2 + 3t

z= 4 + 5t

x= −1 + 2t

y= 2 + 3t

z= −4 − 5t

HẾT

Ngày đăng: 10/04/2023, 15:22

🧩 Sản phẩm bạn có thể quan tâm