LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x + 5,[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x+ 5, tiếp tuyến tại
A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C)
A. 5
9
3
7
4.
Câu 2 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục bé
bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình
chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của
khối trụ thu được
A. 4a
2b
2a2b
4a2b
2a2b
3√2π.
Câu 3 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác
trong góc A của tam giác ABC cắt mặt phẳng (P) : x+ y + z − 6 = 0 tại điểm nào trong các điểm sau
đây:
A (−2; 2; 6) B (1; −2; 7) C (−2; 3; 5) D (4; −6; 8).
Câu 4 Xác định tập tất cả các giá trị của tham số m để phương trình
2x3+ 3
2x
2− 3x − 1
2
=
m
2 − 1
có
4 nghiệm phân biệt
A S = (−2; −3
4) ∪ (
19
4) ∪ (
19
4 ; 6).
C S = (−2; −3
4) ∪ (
19
Câu 5 Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π
(dm3) Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước Tính thể tích nước còn lại trong bình
A 24π(dm3) B 6π(dm3) C 54π(dm3) D 12π(dm3)
Câu 6 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; 1).
Độ dài đường cao AH của tứ diện ABCD là:
Câu 7 Tính thể tích khối tròn xoay khi quay xung quanh trục hoành hình phẳng giới hạn bởi các đường
y= 1
x, x= 1, x = 2 và trục hoành
A V = 3π
2.
Câu 8 Tứ diện OABC có OA= OB = OC = a và đôi một vuông góc Gọi M, N, P lần lượt là trung điểm
AB, BC, CA Thể tích tứ diện OMNP là
A. a
3
a3
a3
a3
12.
Câu 9 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2−5x+m) > log3(x−2)
có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng
Câu 10 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?
Trang 2Câu 11 Cho lăng trụ đứng ABC.A′
B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′
BC)bằng
600Biết diện tích của tam giác∆A′BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′B′C′
A V = 3a3 B V = 2a3
√ 3
Câu 12 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng
Câu 13 Cho số phức z= (1 + i)2
(1+ 2i) Số phức z có phần ảo là
Câu 14 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(−2; 6; −4) B M(−2; −6; 4) C M(5; 5; 0) D M(2; −6; 4).
Câu 15 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln 2023 C y′ = 2023x
ln x D y′ = x.2023x−1
Câu 16 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh của hình trụ
Câu 17 Cho khối lăng trụ đứng ABC · A′
B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC)bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
√ 2
√ 2
6 a3
Câu 18 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 19 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x−3
x−1 B y= x4− 3x2+ 2 C y= x2− 4x+ 1 D y= x3− 3x − 5
Câu 20 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x)dx bằng
Câu 21 NếuR2
0 f(x)dx= 4 thì R02h1
2f(x) − 2idx bằng
Câu 22 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
Câu 23 Trên tập hợp số phức, xét phương trình z2 − 2(m+ 1)z + m2 = 0(m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn |z1|+ |z2|= 2?
Câu 24 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16
9
Câu 25 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?
A.R f(x)dx= sin x + x2
C.R f(x)dx= − sin x + x2+ C D.R f(x)dx= − sin x + x 2
Câu 26 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)
Khoảng cách từ B đến mặt phẳng (S CD) bằng
A.
√
3
2√3
√ 2
√ 2a
Trang 3Câu 27 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= −2
3.
Câu 28 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (−1; −2; −3) B (1; 2; 3) C (2; 4; 6) D (−2; −4; −6).
Câu 29 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 30 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x −3
x −1. B y= x2− 4x+ 1 C y= x3− 3x − 5 D y= x4− 3x2+ 2
Câu 31 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 2
3πr2l
Câu 32 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
A. 1
1
5
4
3.
Câu 33 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn
z1
+
z2
= 2?
Câu 34 Trong các hình dưới đây, có bao nhiêu hình đa diện?
Câu 35 Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc nhau và OA= OB = OC = 1 Tính thể tích V của khối tứ diện OABC
A V = 1
6.
Câu 36 Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
A y= −x3− 2x+ 3 B y= x4− 2x2+ 1 C y= x −3
Câu 37 Hình đa diện dưới đây có bao nhiêu cạnh?
Trang 4Câu 38 Điểm cực đại của đồ thị hàm số y= x4− 2x2+ 3 là
Câu 39 Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt ”?
Câu 40 Cho hàm số y= x+ 1
x −1 có đồ thị là (C) và đường thẳng d có phương trình y= 5 − x Tìm số giao điểm của (C) và d
Câu 41 Tìm giá trị nhỏ nhất của hàm số f (x)= 2x3− 3x2− 12x+ 10 trên đoạn [−3; 3]
Câu 42 Cho hàm số y= f (x) liên tục trên R và lim
x→ +∞y= 3 Trong các khẳng định sau, khẳng định nào luôn đúng?
A Đường thẳng y= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)
B Đường thẳng y= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)
C Đường thẳng x= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)
D Đường thẳng x= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)
Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Câu 44 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 45 Cho hình lăng trụ đứng ABCD.A′
B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α
A.
√
3
√ 3
1
√ 5
5 .
Câu 46 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 47 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
6
3a√30
3a√6
a√15
Câu 48 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 49 Biết
π 2 R
0
sin 2xdx= ea Khi đó giá trị a là:
Trang 5Câu 50 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
4.
HẾT