1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (603)

5 2 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học Quốc Gia Hà Nội
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 119,68 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001001 Câu 1 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001001 Câu 1 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.

Tính thể tích của khối trụ

Câu 2 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= x4+ 2x2+ 1 B y= −x4+ 1 C y= x4+ 1 D y= −x4+ 2x2+ 1

Câu 3 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 4 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

2F(2x − 1)+ C

Câu 5 Cho hàm số y=

x

3

− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 6 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

√ 3

√ 3

2)

Câu 7 Cho hình lập phương ABCD.A

B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′

D′

A. a

3

a3

a3

a3

3.

Câu 8 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 9 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1

1 = z −2

1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox

A (P) : x − 2z + 5 = 0 B (P) : y + z − 1 = 0 C (P) : x − 2y + 1 = 0 D (P) : y − z + 2 = 0.

Câu 10 Biết

3 R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2 [ f (x)+ g(x)]dx bằng

Câu 11 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (−2; 3; 4) B.→−n = (2; −3; 4) C.→−n = (−2; 3; 1) D.→−n = (2; 3; −4)

Câu 12 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M

Câu 13 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −

z

i= 0 Tính S = 2a + 3b

Câu 14 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Trang 2

Câu 15 Tìm đạo hàm của hàm số: y= (x2+ 1)

3 2

A. 3

4x

−1

2(x

2+ 1)

1

2(2x)

1

2 D 3x(x2+ 1)

1

2

Câu 16 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3

2 chỉ có cực tiểu mà không có cực đại

A −1 ≤ m < 0 B −1 ≤ m ≤ 0 C m > 1 D m < −1.

Câu 17 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16

343 < log7 x2−16

27 ?

Câu 18 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 19 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 20 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′

(x) bằng

Câu 21 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

Câu 22 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n2 = (1; −1; 1) B.→−n3 = (1; 1; 1) C.→−n4 = (1; 1; −1) D.→−n1 = (−1; 1; 1)

Câu 23 Xét các số phức z thỏa mãn z2− 3 − 4i = 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng

Câu 24 Cho hàm số y= f (x) có đạo hàm f′(x) = (x − 2)2(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 25 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 26 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

A. 8

Câu 27 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′ = ln3

′ = 1

′ = − 1

′ = 1

x.

Câu 28 Cho khối lăng trụ đứng ABC · A′B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′

BC) bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

A.

2

6 a

√ 2

4 a

√ 2

2 a

3 D. √2a3

Câu 29 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn

z1

+

z2

= 2?

Câu 30 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Trang 3

Câu 31 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 32 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16

16

16π

16π

15 .

Câu 33 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Câu 34 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là

Câu 35 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

A.

Câu 36 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 37 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 38 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

A x − y+ 4 = 0 B x+ y − 5 = 0 C x − y+ 8 = 0 D x+ y − 8 = 0

Câu 39 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?

A |z| < 1

1

2 < |z| < 3

3

2 ≤ |z| ≤ 2. D |z| > 2.

Câu 40 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là

Câu 41 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z

w là

số thuần ảo thì mệnh đề nào sau đây đúng?

A Tam giác OAB là tam giác vuông B Tam giác OAB là tam giác cân.

C Tam giác OAB là tam giác nhọn D Tam giác OAB là tam giác đều.

Câu 42 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

−2 − 3i

3 − 2i z+ 1

= 1

A max |z|= 3 B max |z|= √2 C max |z|= 2 D max |z|= 1

Câu 43 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m

Câu 44 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình

x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0

Trang 4

Câu 45 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A.

15

√ 15

√ 5

1

2.

Câu 46 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −x4+ 2x2+ 8 B y= −x4+ 2x2 C y= x3− 3x2

D y= −2x4+ 4x2

Câu 47 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 125π

3

400π√3

250π√3

500π√3

Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi

qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)

A.

x= 1 − 2t

y= −2 + 3t

x= 1 + 2t

y= −2 + 3t

x= −1 + 2t

y= 2 + 3t

x= 1 + 2t

y= −2 − 3t

z= 4 − 5t .

Câu 49 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

3.

Câu 50 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = x

2(x2− 1) ln 4. B y

(x2− 1) ln 4. C y

(x2− 1)log4e. D y

′ = √ 1

x2− 1 ln 4.

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:24

🧩 Sản phẩm bạn có thể quan tâm