LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = 5x2−3x Tính y′ A y′ = (x2 − 3x)5x2−3x ln 5 B y′ = (2x − 3)5x2−3x l[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hàm số y= 5x 2 −3x Tính y′
A y′= (x2− 3x)5x 2 −3xln 5 B y′ = (2x − 3)5x 2 −3xln 5
Câu 2 Rút gọn biểu thức M= 1
logax+ 1
loga2x+ + 1
logakx ta được:
A M= 4k(k+ 1)
logax . B M= k(k+ 1)
3logax . C M = k(k+ 1)
2logax . D M = k(k+ 1)
logax .
Câu 3 Tìm tất cả các giá trị của tham số m để hàm số y= (m + 2)x3
3 − (m+ 2)x2+ (m − 8)x + m5nghịch biến trên R
Câu 4 Cho hình chóp S ABC có S A⊥(ABC), S A = a√3 Tam giác ABC vuông cân tại B, AC = 2a Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
2a3√3
3√
3
Câu 5 Tính tích phân I= Re
1
lnnx
x dx, (n > 1)
A I = 1
1
n.
Câu 6 Cho hàm số f (x)= e
1
3x
3 −2x 2 +3x+1
Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (−∞; 1) và (3;+∞)
B Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3;+∞)
C Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3;+∞)
D Hàm số nghịch biến trên khoảng (−∞; 1) và (3;+∞)
Câu 7 Đồ thị hàm số nào sau đây có 3 điểm cực trị:
A y= −x4− 2x2− 1 B y= x4+ 2x2− 1 C y= x4− 2x2− 1 D y= 2x4+ 4x2+ 1
Câu 8 Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vuông ABCD có hai cạnh
AB, CD lần lượt là hai dây cung của hai đường tròn đáy, cạnh AD, BC không phải là đường sinh của hình trụ (T ) Tính cạnh của hình vuông này
√ 10
√ 5
Câu 9 Hình chópS ABC có đáy là tam giác vuông tại B có AB = a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A. 1
√ 3
√ 15
√ 3
2 .
Câu 10 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
4x
−1
2(x
2+ 1)
1
2(2x)
1
2 D 3x(x2+ 1)
1
2
Trang 2Câu 11 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
Câu 12 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
30
Câu 13 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính
xác suất sao cho có ít nhất một quả màu trắng
A. 8
1
209
1
210.
Câu 14 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 15 Biết F(x)= x2
là một nguyên hàm của hàm số f (x) trên R Giá trị của
3 R
1 [1+ f (x)]dx bằng
26
Câu 16 Cho hàm số y= f (x) có đạo hàm f′
(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng
Câu 17 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 18 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
Câu 19 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′ = 1
x ln 3 B y′ = 1
x C y′ = ln 3
x D y′ = − 1
x ln 3
Câu 20 Cho cấp số nhân (un)với u1= 2 và công bội q = 1
2 Giá trị của u3 bằng
A. 1
2
Câu 21 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 22 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
Câu 23 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 24 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 25 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x)dx bằng
Trang 3Câu 26 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 1
3πrl2 D πrl.
Câu 27 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 28 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x4− 3x2+ 2 B y= x −3
Câu 29 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (1; 2; 3) B (−2; −4; −6) C (2; 4; 6) D (−1; −2; −3).
Câu 30 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 31 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 32 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 33 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′
(x)= −1
(x)= 2
(x)= 1
′ (x)= lnx
Câu 34 Cho hàm số y= x3− 3x2− 9x − 5 Trong các khẳng định sau, khẳng định nào sai?
A Giá trị cực tiểu của hàm số là 3.
B Hàm số có hai điểm cực trị.
C Giá trị cực đại của hàm số là 0.
D Hàm số có một điểm cực đại và một điểm cực tiểu.
Câu 35 Điểm cực đại của đồ thị hàm số y= x4− 2x2+ 3 là
Câu 36 Cho hàm số y = f (x) liên tục trên R và có đạo hàm f′(x) = x(x + 1) Hàm số y = f (x) đồng biến trên khoảng nào trong các khoảng dưới đây?
Câu 37 Cho hàm số y= f (x) có bảng biến thiên như sau:
x
y′ y
−2
−∞
+∞
−2
Đồ thị hàm số y= f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Trang 4Câu 38 Trong các mệnh đề sau, mệnh đề nào đúng?
A Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
B Hai khối chóp có thể tích bằng nhau thì bằng nhau.
C Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
D Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
Câu 39 Cho hàm số y= −x4− x2+ 1 Trong các khẳng định sau, khẳng định nào sai?
A Điểm cực tiểu của hàm số là (0; 1) B Đồ thị hàm số không có tiệm cận.
C Đồ thị hàm số có một điểm cực đại D Đồ thị hàm số cắt trục tung tại điểm (0; 1) Câu 40 Cho hàm số y= 2x − 3
−x+ 2 Trong các khẳng định sau, khẳng định nào đúng?
A Hàm số đồng biến trên khoảng (−2;+∞) B Hàm số đồng biến trên khoảng (−2; 2).
C Hàm số đồng biến trên khoảng (2;+∞) D Hàm số đồng biến trên tập xác định của nó Câu 41 Cho hàm số y= f (x) liên tục trên R và lim
x→ +∞y= 3 Trong các khẳng định sau, khẳng định nào luôn đúng?
A Đường thẳng y= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)
B Đường thẳng y= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)
C Đường thẳng x= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)
D Đường thẳng x= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)
Câu 42 Cho hàm số y= x+ 1
x −1 có đồ thị là (C) và đường thẳng d có phương trình y= 5 − x Tìm số giao điểm của (C) và d
Câu 43 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
(x2− 1) ln 4. B y
′ = √ 1
x2− 1 ln 4
2(x2− 1) ln 4. D y
(x2− 1)log4e.
Câu 44 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 45 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
A. 31π
32π
33π
5 .
Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t
x= 1 + 2t
y= −2 + 3t
z= 4 − 5t
Câu 47 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vuông Diện tích toàn phần của (T ) là
Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
15
√ 5
1
√ 15
5 .
Câu 49 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Trang 5Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx=R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
B.
3
R
1
|x2− 2x|dx= −R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
C.
3
R
1
|x2− 2x|dx=R2
1
|x2− 2x|dx −
3 R
2
|x2− 2x|dx
D.
3
R
1
|x2− 2x|dx=R2
1 (x2− 2x)dx −
3 R
2 (x2− 2x)dx
HẾT