LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) x + y − z − 1 = 0 Viết phư[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1
3. B (S ) : (x − 2)
2+ (y − 1)2+ (z + 1)2= 3
C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1
3. D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 3
Câu 2 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
4.
Câu 3 Cho hàm số y= 2x+ 2017
x
+ 1 (1) Mệnh đề nào dưới đây là đúng?
A Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1
B Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng
C Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng
D Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x= −1, x = 1
Câu 4 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 5 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A − ln 2 −1
1
1
2.
Câu 6 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 2
(3x − 1) ln 2. B y
3x − 1
ln 2
3x − 1
ln 2
(3x − 1) ln 2.
Câu 7 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20
Câu 8 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)
A f (−1)= 3 B f (−1)= −3 C f (−1)= −1 D f (−1)= −5
Câu 9 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng
Câu 10 Cho hàm số f (x) Biết f (0)= 4 và f′(x)= 2 sin2x+ 1, ∀x ∈ R, khi đó
π 4 R
0
f(x) bằng
A. π2− 4
Trang 2Câu 11 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A.
√
3
√ 15
1
√ 3
5 .
Câu 12 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho
3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất
A M(−3
4;
3
3
4;
1
3
4;
1
3
4;
1
2; −1).
Câu 13 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (2; −3; 4) B.→−n = (−2; 3; 4) C.→−n = (2; 3; −4) D.→−n = (−2; 3; 1)
Câu 14 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= −6
5 −
27
5 + 6
5 −
6
5 + 27
5 i.
Câu 15 Cho hàm số y= f (x) có đạo hàm f′(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng
Câu 16 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 17 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (−1; −2; −3) B (1; 2; 3) C (−2; −4; −6) D (2; 4; 6).
Câu 18 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x−3
x−1 B y= x3− 3x − 5 C y= x4− 3x2+ 2 D y= x2− 4x+ 1
Câu 19 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x)= m có ba nghiệm thực phân biệt?
Câu 20 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 21 NếuR4
−1 f(x)dx= 2 và R4
−1g(x)dx= 3 thì R4
−1[ f (x)+ g(x)]dx bằng
Câu 22 Trên tập hợp số phức, xét phương trình z2 − 2(m+ 1)z + m2 = 0(m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn |z1|+ |z2|= 2?
Câu 23 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
Câu 24 NếuR2
0 f(x)dx= 4 thì R02h1
2f(x) − 2idx bằng
Câu 25 Xét các số phức z thỏa mãnz2− 3 − 4i= 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng
Câu 26 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16
16π
16π
16
15.
Trang 3Câu 27 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 28 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 29 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n2= (1; −1; 1) B.→−n4 = (1; 1; −1) C.→−n3 = (1; 1; 1) D.→−n1 = (−1; 1; 1)
Câu 30 Xét các số phức z thỏa mãn
z2− 3 − 4i
= 2 z
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
z
Giá trị của M2+ m2bằng
Câu 31 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 32 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x −3
x −1. B y= x2− 4x+ 1 C y= x3− 3x − 5 D y= x4− 3x2+ 2
Câu 33 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
24
√ 2
Câu 34 Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − z
z −2i
= 2 ?
A Một đường tròn B Một Parabol C Một đường thẳng D Một Elip.
Câu 35 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là
Câu 36 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z
w là
số thuần ảo thì mệnh đề nào sau đây đúng?
A Tam giác OAB là tam giác đều B Tam giác OAB là tam giác cân.
C Tam giác OAB là tam giác nhọn D Tam giác OAB là tam giác vuông.
Câu 37 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?
A |z| > 2 B |z| < 1
1
2 < |z| < 3
3
2 ≤ |z| ≤ 2.
Câu 38 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức
P= |z1+ z2|
A P=
√
3
√ 2
Câu 39 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x+ 1)2+ (y − 2)2 = 125 B x= 2
C (x − 1)2+ (y − 4)2 = 125 D (x − 5)2+ (y − 4)2= 125
Câu 40 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là
A w= √27 − i hoặcw= √27+ i B w= 1 + √27i hoặcw= 1 − √27i
C w= −√27 − i hoặcw= −√27+ i D w= 1 + √27 hoặcw= 1 − √27
Trang 4Câu 41 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Câu 42 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|
A |z|= 5√2 B |z|= √10 C |z|= 50 D |z|= √33
Câu 43 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α
A.
√
3
1
√ 5
√ 3
4 .
Câu 44 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 250π
√
3
400π√3
500π√3
125π√3
Câu 45 Hàm số nào trong các hàm số sau đồng biến trên R.
x+ 2 .
Câu 46 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)
và có một véc tơ pháp tuyến là→−n(2; 1; −4)
A 2x+ y − 4z + 5 = 0 B −2x − y+ 4z − 8 = 0
C 2x+ y − 4z + 1 = 0 D 2x+ y − 4z + 7 = 0
Câu 47 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m < −2 B m > 1 hoặc m < −1
3 C m > 2 hoặc m < −1 D m > 1.
Câu 48 Biết
π 2 R
0
sin 2xdx= ea Khi đó giá trị a là:
Câu 49 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m
Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax = ay ⇔ x= y B Nếu a < 1 thì ax > ay ⇔ x< y
C Nếu a > 0 thì ax > ay ⇔ x< y D Nếu a > 1 thì ax > ay ⇔ x> y
Trang 5HẾT