Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1),[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450
A C(−3; 1; 1) B C(5; 9; 5) C C(1; 5; 3) D C(3; 7; 4).
Câu 2 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= x4+ 1 B y= x4+ 2x2+ 1 C y= −x4+ 1 D y= −x4+ 2x2+ 1
Câu 3 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A [7
4; 2]S[22;+∞) B (7
4;+∞)
C [22;+∞) D (7
4; 2]S[22;+∞)
Câu 4 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
4).
Câu 5 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 B (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1
3.
C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1
3.
Câu 6 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 7 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 2
3x − 1
ln 2
3x − 1
ln 2
(3x − 1) ln 2. D y
(3x − 1) ln 2.
Câu 8 Cho hàm số y=
x
3
− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị
Câu 9 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh
đươc chon tao thanh tam giac đêu la
A P= 1
55.
Câu 10 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua
Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB
Câu 11 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn
z1
2
+
z2
2
= 5
Trang 2Câu 12 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?
Câu 13 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?
Câu 14 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac
nhau
Câu 15 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
A −2
3(2x+ 1)−
4
3(2x+ 1)−
4
3
C 2(2x+ 1)−
1
1
3 ln(2x+ 1)
Câu 16 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là
Câu 17 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?
Câu 18 Gọi z1, z2là hai nghiệm phức của phương trình 2(1+i)z2−4(2−i)z−5−3i= 0 TổngT = |z1|2+|z2|2
bằng bao nhiêu?
√ 13
Câu 19 Tổng nghịch đảo các nghiệm của phương trình z4− z3− 2z2+6z−4 = 0 trên tập số phức bằng
A. 1
3
1
3
2.
Câu 20 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?
A |w|= 3√5 B |w|= √73 C |w|= √5 D |w|= 5
Câu 21 Biết z0là nghiệm phức có phần ảo âm của phương trình z2− (3 − 2i)z+ 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0là
Câu 22 Tìm tất cả các giá trị thực của tham số m để phương trình mz2+ 2mz − 3(m − 1) = 0 không có nghiệm thực là
A 0 ≤ m < 3
4. B m < 0 hoặc m >
3
4. C m ≥ 0. D 0 < m <
3
4.
Câu 23 Biết z= 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?
A −7
7
3
3
4.
Câu 24 Căn bậc hai của -4 trong tập số phức là.
Câu 25 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?
A z2+ (1 + 4i)z − 9 + 7i = 0 B z2+ (5 − 2i)z − 9 + 7i = 0
C z2− (5 − 2i)z+ 9 − 7i = 0 D z2− (1+ 4i)z + 9 − 7i = 0
Câu 26 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Trang 3Câu 27 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
A. 1
4
18
9
35.
Câu 28 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 29 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 30 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (−1; −2; −3) B (1; 2; 3) C (2; 4; 6) D (−2; −4; −6).
Câu 31 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 32 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)
Khoảng cách từ B đến mặt phẳng (S CD) bằng
√ 3
√ 2
√ 3
3 a.
Câu 33 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 34 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
C Phần thực của z là số âm D z là một số thực không dương.
Câu 35 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 2√5 B P= 2016 C P = −2016 D P = 1
Câu 36 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 3
2. B |w|min= 1
2. C |w|min = 2 D |w|min = 1
Câu 37 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 38 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 39 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 40 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
2.
Trang 4Câu 41 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 42 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 43 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
30
Câu 44 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt
phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD
3.
Câu 45 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng
Câu 46 Đồ thị hàm số y= x+ 1
x −2 (C) có các đường tiệm cận là
A y= −1 và x = 2 B y= 1 và x = −1 C y= 2 và x = 1 D y= 1 và x = 2
Câu 47 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
A V = 32
5 .
Câu 48 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i= 0 Tính S = 2a + 3b
Câu 49 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A.
√
3
1
√ 15
√ 3
2 .
Câu 50 Thể tích khối lập phương có cạnh 3a là:
HẾT