1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (702)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 4
Dung lượng 123,88 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A m= 2 B −2 ≤ m ≤ 2 C −2 < m < 2 D 0 < m < 2.

Câu 2 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)

Câu 3 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a

3

6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho

Câu 4 Tính nguyên hàmR cos 3xdx

A −1

3sin 3x+ C D 3 sin 3x+ C

Câu 5 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1

(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim

t→ +∞S(t).

A ln 2+ 1

1

1

1

2.

Câu 6 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 7 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= x4+ 2x2+ 1 B y= −x4+ 1 C y= −x4+ 2x2+ 1 D y = x4+ 1

Câu 8 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

2

1

6.

Câu 9 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0 Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90o Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?

A I(−1; −2; 3) B K(3; 0; 15) C J(−3; 2; 7) D H(−2; −1; 3).

Câu 10 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là

Câu 11 Cho cấp số nhân (un) với u1 = 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Câu 12 Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai vectơ pháp tuyến là−→nP và

−→

nQ Biết cosin góc giữa hai vectơ−→nP và−nQ→bằng −

√ 3

2 Góc giữa hai mặt phẳng (P) và (Q) bằng.

Câu 13 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng

Trang 2

Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.

Phương trình của (S ) là

A (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40 B (x − 1)2+ (y − 4)2+ (z + 2)2= 40

C (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40 D (x − 1)2+ (y − 4)2+ (z + 2)2= 10

Câu 15 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2 + z2

2

= 5

Câu 16 Cho hàm số y= f (x) có bảng biến thiên như sau

Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Câu 17 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?

A |w|= √3 B |w|= 2√2 C |w|= √2 D |w|= √5

Câu 18 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?

A Phương trình đã cho luôn có nghiệm.

B Phương trình đã cho có tổng hai nghiệm bằng −b

a .

C Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm

D Phương trình đã cho có tích hai nghiệm bằng c

a.

Câu 19 Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0 Tính tổng

T = |z1|+ |z2|+ |z3|+ |z4|

Câu 20 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?

Câu 21 Biết phương trình z2+ mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo Khi đó tham số thực

mgần giá trị nào nhất trong các giá trị sau?

Câu 22 Biết z là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 13 = 0 Khi đó mô-đun của

số phức w= z2+ 2z bằng bao nhiêu?

A |w|= 5 B |w|= 5√13 C |w|= √13 D |w|= √37

Câu 23 Căn bậc hai của -4 trong tập số phức là.

Câu 24 Gọi z1, z2là hai nghiệm phức của phương trình 2(1+i)z2−4(2−i)z−5−3i= 0 TổngT = |z1|2+|z2|2 bằng bao nhiêu?

A T =

13

4 .

Câu 25 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?

A z2+ (5 − 2i)z − 9 + 7i = 0 B z2+ (1 + 4i)z − 9 + 7i = 0

C z2− (5 − 2i)z+ 9 − 7i = 0 D z2− (1+ 4i)z + 9 − 7i = 0

Câu 26 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= 2

′(x)= −1

x2

Trang 3

Câu 27 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 28 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 29 NếuR−14 f(x)= 2 và R4

−1g(x)= 3 thì R4

−1[ f (x)+ g(x)] bằng

Câu 30 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x) bằng

A. 3

3

Câu 31 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 32 Trong không gian Oxyz, cho đường thẳng d : x −1

2 = y −2

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A P(1; 2; 3) B Q(1; 2; −3) C N(2; 1; 2) D M(2; −1; −2).

Câu 33 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?

Câu 34 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 36 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

A |A| < 1 B |A| > 1 C |A| ≤ 1 D |A| ≥ 1.

Câu 37 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 3

2 < |z| < 3 B 3 < |z| < 5 C. 1

2 < |z| < 2 D. 5

2 < |z| < 4

Câu 38 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

Câu 39 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

A. 3

1

2.

Câu 40 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Trang 4

Câu 41 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 42 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

A |z|= 1

Câu 43. R 6x5dxbằng

6x

6+ C D 6x6+ C

Câu 44 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(3

4;

1

3

4;

3

3

4;

1

3

4;

1

2; −1).

Câu 45 Số phức z= 2 − 3i có phần ảo là

Câu 46 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=

a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và

BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)

Câu 47 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 48 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?

A.→−b ⊥→−a B.

→ a

→ c

= √3 D.→−b ⊥→−c

Câu 49 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn

z+ 4 − 8i

= 2√5

là đường tròn có phương trình:

A (x+ 4)2+ (y − 8)2 = 2√5 B (x − 4)2+ (y + 8)2 = 2√5

C (x+ 4)2+ (y − 8)2 = 20 D (x − 4)2+ (y + 8)2 = 20

Câu 50 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3

2 chỉ có cực tiểu mà không có cực đại

A −1 ≤ m < 0 B m > 1 C m < −1 D −1 ≤ m ≤ 0.

HẾT

Ngày đăng: 10/04/2023, 14:59