Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tính nguyên hàm ∫ cos 3xdx A 1 3 sin 3x +C B − 1 3 sin 3x +C C −3 sin 3x[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Tính nguyên hàmR cos 3xdx
A. 1
Câu 2 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
A.R f(2x − 1)dx= 2F(2x − 1) + C B. R f(2x − 1)dx = F(2x − 1) + C
C.R f(2x − 1)dx= 1
2F(2x − 1)+ C D.R f(2x − 1)dx = 2F(x) − 1 + C
Câu 3 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′
; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
3.
Câu 4 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a
3
6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho
Câu 5 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(a
b)= ln a
C ln(ab2)= ln a + (ln b)2
D ln(ab2)= ln a + 2 ln b
Câu 6 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (−3; 1).
C Hàm số đồng biến trên khoảng (−3; 1) D Hàm số nghịch biến trên khoảng (−∞; −3) Câu 7 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A ln 2+ 1
1
1
1
2.
Câu 8 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với
cạnh huyền bằng 2a Tính thể tích của khối nón
A. 2π.a
3
π√2.a3
4π√2.a3
π.a3
3 .
Câu 9 Cho hàm số y= f (x) có đồ thị của y = f′
(3 − 2x) như hình vẽ sau:
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x3+ 2021x
+ m)
có ít nhất 5 điểm cực trị?
Câu 10 Cho khối lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′
BC) bằng
√ 3
3 a Tính thể tích của khối lăng trụ ABC.A
′
B′C′
A. a
3
a3
a3√ 2
a3√ 2
Trang 2Câu 11 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB= a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng
3
a3
3
Câu 12 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?
Câu 13 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 14 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng
Câu 15 Cho hàm số f (x) liên tục trên R và
2
R
0
( f (x)+ 2x) = 5 TínhR2
0
f(x)
Câu 16 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích
toàn phần St p của hình nón đó
A St p = πa2 B St p = 1
4πa2 C St p = 3
4πa2 D St p = 5
4πa2
Câu 17 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?
Câu 18 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?
A |w|= 2√2 B |w|= √2 C |w|= √3 D |w|= √5
Câu 19 Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2+ bz + c = 0 (với
a, b ∈ R ) Khi đó tổng a + b + c bằng bao nhiêu?
Câu 20 Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0 Tính tổng
T = |z1|+ |z2|+ |z3|+ |z4|
Câu 21 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
Câu 22 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?
A Phương trình đã cho có tổng hai nghiệm bằng −b
a .
B Phương trình đã cho luôn có nghiệm.
C Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm
D Phương trình đã cho có tích hai nghiệm bằng c
a.
Câu 23 Biết z0 là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 20 = 0 Trên mặt phẳng tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w= (1 + i)z0− 2z0 ?
Câu 24 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?
A |w|= 5 B |w|= 3√5 C |w|= √73 D |w|= √5
Trang 3Câu 25 Phương trình (2 − i)z+ 3(1 + iz) = 7 + 8i có nghiệm là.
Câu 26 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 27 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 28 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x) bằng
3
Câu 29 NếuR4
−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng
Câu 30 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= 1
′
(x)= 2
x2 D F′(x)= lnx
Câu 31 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln(6a2) B ln2
3
2.
Câu 32 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
A.
x= 1 + 2t
y= −1 + 3t
z= −1 + t
x= 5 + 2t
y= 5 + 3t
z= −1 + t
x= 5 + t
y= 5 + 2t
z= 1 + 3t
x= 1 + 2t
y= −1 + t
z= −1 + 3t
Câu 33 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)
Khoảng cách từ B đến mặt phẳng (S CD) bằng
A. 2
√
3
√ 3
√
√ 2
2 a.
Câu 34 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8
3.
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
Câu 35 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
2.
Câu 36 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 4)2 B P= (|z| − 2)2 C P =
|z|2− 22 D P =
|z|2− 42
Câu 38 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Trang 4Câu 39 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
A.
√
2
1
1
5.
Câu 40 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 41 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min = 2 B |w|min = 1
2. C |w|min = 3
2. D |w|min= 1
Câu 42 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 43 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A.
√
3
√ 3
1
√ 15
5 .
Câu 44. R 6x5dxbằng
A. 1
6x
Câu 45 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của
3
R
1
[1+ f (x)]dx bằng
A. 32
26
3 .
Câu 46 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
Câu 47 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:
A I(−1; 2; −3); R = 3 B I(1; −2; 3); R = 3 C I(1; 2; 3); R= 3 D I(1; 2; −3); R= 3
Câu 48 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A −x+ 2y + 2z + 4 = 0 B x − 2y − 2z − 4= 0
Câu 49 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
4x
−1
1
2(2x)
1
2(x
2+ 1)
1
2
Câu 50 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3
2 chỉ có cực tiểu mà không có cực đại
A m < −1 B −1 ≤ m ≤ 0 C −1 ≤ m < 0 D m > 1.
HẾT