Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3 2 , ((ℵ) có[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
√ 3π
2π
√
3.
Câu 2 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
4πR3
Câu 3 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A logax> logay B log 1
a
x> log1
a
y C ln x > ln y D log x > log y.
Câu 4 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A logax2 = 2logax B alogax = x
C loga(x − 2)2 = 2loga(x − 2) D loga2x= 1
2logax.
Câu 5 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = √3 B |→−u |= 1 C |→−u |= 9 D |→−u |= 3
Câu 6 Cho hình lập phương ABCD.A′
B′C′D′ Tính góc giữa hai đường thẳng AC và BC′
Câu 7 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?
A Nếux > 2 thìy < −15 B Nếu 0 < x < π thì y > 1 − 4π2
C Nếux= 1 thì y = −3 D Nếu 0 < x < 1 thì y < −3.
Câu 8 Kết quả nào đúng?
A.R sin2xcos x= cos2x sin x + C B. R sin2xcos x= −sin3x
C.R sin2xcos x= sin3x
Câu 9 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 10 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn
phương án dưới đây Hỏi hàm số đó là hàm số nào?
Câu 11 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng
Câu 12 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng
(S BD) theo a
A. a
√
2
a
√ 2
Trang 2Câu 13 Tính đạo hàm của hàm số y= 5x
ln 5.
Câu 14 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là
Câu 15 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 16 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 17 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 18 Số phức z= 1+ i
1 − i
!2016 + 1 − i
1+ i
!2018 bằng
Câu 19 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z · z = a2− b2 B |z2|= |z|2 C z+ z = 2bi D z − z= 2a
Câu 20 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= 34 B |z|= 5
√ 34
√ 34
3 .
Câu 21 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A 0 ≤ m ≤ 1 B m ≥ 0 hoặc m ≤ −1 C −1 ≤ m ≤ 0 D m ≥ 1 hoặc m ≤ 0 Câu 22 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 23 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
A −21008+ 1 B 21008 C −21008 D −22016
Câu 24 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực không âm B Mô-đun của số phức z là số thực.
C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số phức.
Câu 25 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 26 Cho hàm số y= f (x) có đạo hàm f′(x) = (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 27 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 28 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 29 Phần ảo của số phức z= 2 − 3i là
Trang 3Câu 30 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng
3
Câu 31 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 2
3πr2l
Câu 32 NếuR2
0 f(x)= 4 thì R02[1
2f(x) − 2] bằng
Câu 33 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 9
4;+∞
!
4;
5 4
!
2;
9 4
!
4
!
Câu 35 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1
2. B |w|min= 3
2. C |w|min = 1 D |w|min = 2
Câu 36 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 37 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 38 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 1
Câu 39 Cho số phức z thỏa mãn1 −
√ 5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 5
2 < |z| < 4 B. 3
2 < |z| < 3 C. 1
2 < |z| < 2 D 3 < |z| < 5.
Câu 40 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 3
1
Câu 41 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 1
2 < |z| < 3
3
2 < |z| < 2 C 2 < |z| < 5
5
2 < |z| < 7
2.
Câu 42 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
Câu 43 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:
A I(1; 2; 3); R= 3 B I(1; 2; −3); R= 3 C I(1; −2; 3); R = 3 D I(−1; 2; −3); R= 3
Trang 4Câu 44 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?
Câu 45 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt
phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD
A V = a3
Câu 46 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.
Câu 47 Đồ thị hàm số y= x+ 1
x −2 (C) có các đường tiệm cận là
A y= 2 và x = 1 B y= 1 và x = −1 C y= −1 và x = 2 D y= 1 và x = 2
Câu 48 Với a là số thực dương tùy ý, log5(5a) bằng
A 1 − log5a B 5 − log5a C 1+ log5a D 5+ log5a
Câu 49 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3
2 chỉ có cực tiểu mà không có cực đại
A −1 ≤ m ≤ 0 B m > 1 C −1 ≤ m < 0 D m < −1.
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(−2; −6; 4) B M(2; −6; 4) C M(5; 5; 0) D M(−2; 6; −4).
HẾT