1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (621)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề luyện thi
Năm xuất bản 2022 - 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 124,77 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai? A loga2 x = 1 2 l[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?

A loga2x= 1

2 = 2loga(x − 2)

Câu 2 Hàm số nào sau đây đồng biến trên R?

A y= √x2+ x + 1 − √x2− x+ 1 B y= x2

Câu 3 Hàm số nào sau đây không có cực trị?

Câu 4 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?

A |→−u | = 9 B |→−u |= √3 C |→−u |= 3

D |→−u |= 1

Câu 5 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = 3+ 2x

x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?

A −4 < m < 1 B ∀m ∈ R C m < 3

2. D 1 < m , 4.

Câu 6 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R

A m > 2e B m ≥ e−2 C m > e2 D m > 2.

Câu 7 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

y= 1

R

R

y= −1

2.

Câu 8 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 9 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P= 1

220.

Câu 10 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?

Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.

Phương trình của (S ) là

A (x − 1)2+ (y − 4)2+ (z + 2)2= 10 B (x − 1)2+ (y − 4)2+ (z + 2)2 = 40

C (x+ 1)2+ (y + 4)2+ (z − 2)2= √40 D (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40

Câu 12 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng

Câu 13 Cho hàm số f (x)=

− 1

3x

3+ 1

2(2m+ 3)x2− (m2+ 3m)x + 2

3

Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?

Trang 2

Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2+ (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?

A (P) đi qua tâm mặt cầu (S ) B (P) cắt mặt cầu (S ).

C (P) tiếp xúc mặt cầu (S ) D (P) không cắt mặt cầu (S ).

Câu 15 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là

A x5− sin x+ C B x5+ sin x + C C 5x5− sin x+ C D 5x5+ sin x + C

Câu 16 Nếu

6 R

1

f(x)= 2 vàR6

1

g(x)= −4 thìR6

1 ( f (x)+ g(x)) bằng

Câu 17 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là−3 và phần ảo là −2i B Phần thực là 3 và phần ảo là 2i.

C Phần thực là3 và phần ảo là 2 D Phần thực là −3 và phần ảo là−2.

Câu 18 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|=

34

√ 34

Câu 19 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 20 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 21 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 22 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là

Câu 23 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 24 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 25 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 26 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′(x)= 2x + 1 Giá trị f (2) − f (1) bằng

Câu 27 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là

A (x − 2)2+ y2+ z2= 3 B (x+ 2)2+ y2+ z2 = 9

C (x − 2)2+ y2+ z2= 9 D (x+ 2)2+ y2+ z2 = 3

Câu 28 Tích phân I = R02(2x − 1) có giá trị bằng:

Câu 29 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e

A F(x) = ex B F(x) = ex +1. C F(x)= e2x D F(x)= ex+ 1

Trang 3

Câu 30 Hàm số f (x) thoả mãn f

(x)= xxlà:

A (x+ 1)x+ C B (x − 1)x+ C C x2+ x+1

x+ 1 + C. D x2 x+ C.

Câu 31 Tìm nguyên hàm I = R xcosxdx

2 + C

2 + C

Câu 32 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là

A (3; 3; −1) B (−1; −1; −3) C (3; 1; 1) D (1; 1; 3).

Câu 33 Tích phânR01e−x dx bằng

A. 1

e −1

1

e.

Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 42 B P=

|z|2− 22 C P = (|z| − 4)2 D P = (|z| − 2)2

Câu 35 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2 Tính giá trị biểu thức P=

z1 z2

+

z2 z1

√ 2

2 .

Câu 36 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 37 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 38 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

√ 2

1

5.

Câu 39 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 2√5 B P= 2016 C P = −2016 D P = 1

Câu 40 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 10

√ 2

√ 6

√ 2

√ 5

5 .

Câu 41 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 42 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 2 B |z|= 1

Câu 43 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 3mn+ n + 4

Trang 4

C log22250= 2mn+ 2n + 3

Câu 44 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A.

1

5ln 2+ 6π

1

4ln 2+ 3π

2 . D ln 2+ 6π

5 .

Câu 45 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

2

5a√3

5a√3

5a√2

Câu 46 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox

A m > 2 hoặc m < −1 B m > 1 C m < −2 D m > 1 hoặc m < −1

3.

Câu 47 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Câu 48 Cho bất phương trình 3

√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng

A Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

B Bất phương trình đúng với mọi x ∈ (4;+∞)

C Bất phương trình đúng với mọi x ∈ [ 1; 3].

D Bất phương trình vô nghiệm.

Câu 49 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

128.

Câu 50 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích

toàn phầnSt pcủa hình nón (N) bằng

A St p = πRl + πR2 B St p = πRh + πR2 C St p = 2πRl + 2πR2 D St p = πRl + 2πR2

Trang 5

HẾT

Ngày đăng: 10/04/2023, 07:40