1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (621)

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 - 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 125,42 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp ABCD A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuôn[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình hộp ABCD.A

B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′ lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′

A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′

D′theo a

Câu 2 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?

A logax> logay B ln x > ln y C log 1

a

x> log1

a

y D log x > log y.

Câu 3 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng

A 2π

Câu 4 Công thức nào sai?

Câu 5 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?

Câu 6 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

6 .

Câu 7 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)

và trục tung có tọa độ là

A (0; 0; 5) B (0; −5; 0) C (0; 5; 0) D (0; 1; 0).

Câu 8 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?

A a

2 > b√2 B. √5

a< √5

b C ea > eb D a−√3 < b−√3

Câu 9 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

1 và d2 :

x −4

−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách

từ điểm M(1; 1; 1) đến (P) bằng

A. √3

5.

53.

D. 2

3√10.

Câu 10 Cho hàm số y= f (x) có đồ thị của y = f′(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Câu 11 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng

MN có phương trình tham số là

Trang 2

Câu 12 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P = 1

55.

Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2+ (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?

A (P) không cắt mặt cầu (S ) B (P) đi qua tâm mặt cầu (S ).

C (P) tiếp xúc mặt cầu (S ) D (P) cắt mặt cầu (S ).

Câu 14 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là

Câu 15 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?

Câu 16 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là

A 5x5+ sin x + C B 5x5− sin x+ C C x5− sin x+ C D x5+ sin x + C

Câu 17 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 18 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 19 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 20 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 21 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|=

34

√ 34

3 . D |z|= √34

Câu 22 Những số nào sau đây vừa là số thực và vừa là số ảo?

A Chỉ có số 1 B C.Truehỉ có số 0 C Không có số nào D 0 và 1.

Câu 23 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 24 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= √5 B |z1+ z2|= 1 C |z1+ z2|= 5 D |z1+ z2|= √13

Câu 25 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 26 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương

trình

A x − 2y+ 2z + 15 = 0 B x+ 2y + 2z + 15 = 0

C x − 2y+ 2z − 15 = 0 D x+ 2y + 2z − 15 = 0

Câu 27 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′(x)= 2x + 1 Giá trị f (2) − f (1) bằng

Trang 3

Câu 28 Tìm nguyên hàm I = R xcosxdx.

A I = x2cosx

2 + C

Câu 29 Nguyên hàmR 1+ lnx

x dx(x > 0) bằng

A. 1

2ln

2x+ lnx + C B ln2x+ lnx + C C x+ ln2x+ C D x+ 1

2ln

2x+ C

Câu 30 Hàm số f (x) thoả mãn f′(x)= xxlà:

A (x − 1)x+ C B x2+ x+1

x+ 1 + C. C x2 x+ C. D (x+ 1)x+ C.

Câu 31 ChoR1

0 f(x)= 2Rv `a R1

0 g(x)= 5 R1

0 [ f (x) − 2g(x)] bằng

Câu 32 Tích phân I = R2

0 (2x − 1) có giá trị bằng:

Câu 33 Tính tích phân I = R 2

1 xexdx

Câu 34 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

√ 2

√ 3

Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 36 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

√ 2

1

2.

Câu 37 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

Câu 38 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A Phần thực của z là số âm B z là một số thực không dương.

Câu 39 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

1

2.

Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 41 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2 Tính giá trị biểu thức P=

z1 z2

+

z2 z1

A. √1

√ 2

Trang 4

Câu 42 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2= 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2√13 B T = 4√13 C T = 2

√ 85

√ 97

Câu 43 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

17

πa2√ 15

πa2√ 17

πa2√ 17

Câu 44 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α

A.

3

1

√ 3

√ 5

5 .

Câu 45 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

Câu 46 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −2x4+ 4x2 B y= −x4+ 2x2 C y= x3− 3x2

D y= −x4+ 2x2+ 8

Câu 47 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 48 Đồ thị hàm số y= 2x −

x2+ 3

x2− 1 có số đường tiệm cận đứng là:

Câu 49 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = x

2(x2− 1) ln 4. B y

(x2− 1) ln 4. C y

′ = √ 1

x2− 1 ln 4

(x2− 1)log4e.

Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)

Trang 5

HẾT

Ngày đăng: 10/04/2023, 13:25