1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (550)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 125,63 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được A[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường tròn B Đường parabol C Đường hypebol D Đường elip.

Câu 2 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1

x là đúng?

A Hàm số nghịch biến trên (0;+∞) B Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)

C Hàm số đồng biến trên R D Hàm số nghịch biến trên R.

Câu 3 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2

A m ∈ (0; 2) B m ∈ (−1; 2) C m ≥ 0 D −1 < m < 7

2.

Câu 4 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:

A y= x

5 ln 5+ 1 − 1

5 ln 5 −

1

ln 5.

C y= x

5 ln 5− 1+ 1

5 ln 5 + 1

Câu 5 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?

A alogax = x B loga(x − 2)2 = 2loga(x − 2)

C logax2 = 2logax D loga2x= 1

2logax.

Câu 6 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC =

√ 3ab2

√ 3b2− a2

C VS.ABC =

√ 3a2b

2 q

b2− √3a2

Câu 7 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

A. 13

Câu 8 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng

A π

l2− R2 D 2πRl.

Câu 9 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là

A x5+ sin x + C B x5− sin x+ C C 5x5− sin x+ C D 5x5+ sin x + C

Câu 10 Cho hàm số y= f (x) có đồ thị của y = f′

(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Câu 11 Tập nghiệm của bất phương trình 52x+3> −1 là

Câu 12 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

d2 : x −4

−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng

Trang 2

A. √1

53.

5.

D. 2

3√10.

Câu 13 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua

Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB

Câu 14 Cho số phức z1= 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng

Câu 15 Tính đạo hàm của hàm số y= 5x

A y′ = 5xln 5 B y′ = 5x

′ = x.5x−1 D y′ = 5x

Câu 16 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính e

2

R

1

f(ln x)

Câu 17 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 18 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là−3 và phần ảo là −2i B Phần thực là −3 và phần ảo là−2.

C Phần thực là3 và phần ảo là 2 D Phần thực là 3 và phần ảo là 2i.

Câu 19 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 34 B |z|=

√ 34

√ 34

3 . D |z|= √34

Câu 20 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −11

29

11

29

13.

Câu 21 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 22 Những số nào sau đây vừa là số thực và vừa là số ảo?

A Không có số nào B 0 và 1 C Chỉ có số 1 D C.Truehỉ có số 0.

Câu 23 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= √48 B |w|= 6√3 C |w|= √85 D |w|= 4√5

Câu 24 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 25 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 26 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), và I(1; 1; 1) Mặt phẳng

qua I, song song với mặt phẳng (ABC) có phương trình là:

A x − 1 = 0 B x+ y + z − 3 = 0 C y − 1= 0 D z − 1= 0

Câu 27 Biết

1 R

0

3x − 1

x2+ 6x + 9 dx = 3ln

a

b −

5

6, trong đó a, b nguyên dương và

a

b là phân số tối giản Hãy tính ab

4.

Trang 3

Câu 28 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x.

A F(x)= −cos2x B F(x)= sin2x C F(x) = −cos2x D F(x)= −1

2cos2x.

Câu 29 Cho hàm số f (x) có đạo hàm trên đoạn [−1; 2] và f (−1)= 2023, f (2) = −1 Tích phân R2

−1 f′(x) bằng:

Câu 30 Hàm số f (x) thoả mãn f

(x)= xxlà:

A (x+ 1)x+ C B (x − 1)x+ C C x2+ x+1

x+ 1 + C. D x2 x+ C.

Câu 31 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên

[a; b] Mệnh đề nào dưới đây đúng?

A.Rb

a k · f(x)= k[F(b) − F(a)]

B. Rb

a f(2x+ 3) = F(2x + 3)

b

a

C.Ra

b f(x)= F(b) − F(a)

D Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)

Câu 32 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R4

3 f(x)= 4 Tích phân R3

0 f(x) bằng

Câu 33 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương

trình

A x − 2y+ 2z − 15 = 0 B x+ 2y + 2z − 15 = 0

Câu 34 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

1

2.

Câu 35 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 2 B |w|min= 1

2. C |w|min = 3

2. D |w|min = 1

Câu 36 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Câu 37 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 38 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 1

2 < |z| < 3

3

2 ≤ |z| ≤ 2. D |z| <

1

2.

Câu 39 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

A |A| ≤ 1 B |A| ≥ 1 C |A| < 1 D |A| > 1.

Câu 40 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Trang 4

Câu 41 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

√ 2

1

2.

Câu 42 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 43 Hàm số nào trong các hàm số sau đồng biến trên R.

C y= 4x+ 1

Câu 44 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

32.

Câu 45 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

17

πa2√ 17

πa2√ 15

πa2√ 17

Câu 46 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 25

27

29

23

4 .

Câu 47 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = x

2(x2− 1) ln 4. B y

′ = √ 1

x2− 1 ln 4

(x2− 1) ln 4. D y

(x2− 1)log4e.

Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A.

15

√ 5

1

√ 15

5 .

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)

và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3

√ 2

2 Giả sử phương trình mặt phẳng (P) có dạng

ax+ by + cz + 2 = 0 Tính giá trị abc

Câu 50 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Trang 5

HẾT

Ngày đăng: 10/04/2023, 07:39

🧩 Sản phẩm bạn có thể quan tâm