Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của
M trên mặt phẳng (Oxy)
A A(1; 0; 3) B A(0; 0; 3) C A(0; 2; 3) D A(1; 2; 0).
Câu 2 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 2
3x − 1
ln 2
(3x − 1) ln 2. C y
(3x − 1) ln 2. D y
′ = 6 3x − 1
ln 2
Câu 3 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A [7
4; 2]S[22;+∞) B (7
4;+∞)
C [22;+∞) D (7
4; 2]S[22;+∞)
Câu 4 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450
A C(3; 7; 4) B C(−3; 1; 1) C C(1; 5; 3) D C(5; 9; 5).
Câu 5 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1 V2 = 1
V1 V2 = 1
V1 V2 = 1
Câu 6 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với
cạnh huyền bằng 2a Tính thể tích của khối nón
A. 2π.a
3
π√2.a3
π.a3
4π√2.a3
Câu 7 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 9 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 10 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 11 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 12 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; −2; −3) B (−1; 2; 3) C (1; 2; −3) D (1; −2; 3).
Trang 2Câu 13 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên.
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 14 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 15 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị?
Câu 16 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
A. 3
3
4.
Câu 17 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 18 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực.
C Mô-đun của số phức z là số thực không âm D Mô-đun của số phức z là số thực dương.
Câu 19 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 20 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 21 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 22 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 23 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 24 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 25 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 26 ChoR1
0 f(x)= 2R v `a R1
0 g(x)= 5 R1
0 [ f (x) − 2g(x)] bằng
Câu 27 Nguyên hàmR 1+ lnx
x dx(x > 0) bằng
A ln2x+ lnx + C B x+ ln2x+ C C. 1
2ln
2x+ lnx + C D x+ 1
2ln
2x+ C
Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x+ 2)2+ y2+ z2= 9 B (x+ 2)2+ y2+ z2 = 3
C (x − 2)2+ y2+ z2= 9 D (x − 2)2+ y2+ z2 = 3
Trang 3Câu 29 F(x) là một nguyên hàm của hàm số y= xex Hàm số nào sau đây không phải là F(x)?
A F(x)= 1
2(e
x 2
+ 5) B F(x)= 1
2e
x 2
+ 2 C F(x) = −1
2e
x 2
+ C D F(x) = −1
2(2 − e
x 2
)
Câu 30 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e
A F(x)= ex+ 1 B F(x)= e2x C F(x) = ex +1. D F(x)= ex
Câu 31 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(1; 4; 4) B C(−1; −4; 4) C C(1; 0; 2) D C(−1; 0; −2).
Câu 32 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R34 f(x)= 4 Tích phân R03 f(x) bằng
Câu 33 BiếtR8
1 f(x)= −2; R4
1 f(x)= 3; R4
1 g(x)= 7 Mệnh đề nào sau đây sai?
A.R4
4 f(x)= 1
C.R8
1 [ f (x)+ g(x)] = 10
Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 35 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 37 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 38 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 0;1
4
!
2;
9 4
!
4;
5 4
!
4;+∞
!
Câu 40 Cho số phức z thỏa mãn1 −
√ 5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 5
2 < |z| < 4 B. 3
2 < |z| < 3 C 3 < |z| < 5 D. 1
2 < |z| < 2
Câu 41 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| < 1
3
1
2 < |z| < 3
2. D |z| > 2.
Câu 42 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
Trang 4Câu 43 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 44 Cho m= log23; n= log52 Tính log22250 theo m, n
A log22250= 3mn+ n + 4
C log22250= 2mn+ n + 2
Câu 45 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = √ 1
x2− 1 ln 4. B y
(x2− 1)log4e. C y
(x2− 1) ln 4. D y
2(x2− 1) ln 4.
Câu 46 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Câu 48 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v
A 2→−u + 3−→v = (1; 13; 16) B 2→−u + 3−→v = (3; 14; 16)
C 2→−u + 3−→v = (2; 14; 14) D 2→−u + 3−→v = (1; 14; 15)
Câu 50 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
12.
Trang 5HẾT