1. Trang chủ
  2. » Giáo án - Bài giảng

polymer compositeband theory-1

57 200 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Polymer Composite Band Theory-1
Tác giả P.A. Cox, J.K. Burdett
Trường học Unknown University
Chuyên ngành Physics
Thể loại Lecture Notes
Định dạng
Số trang 57
Dung lượng 7 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Band Theory • This is a quantum-mechanical treatment of bonding in solids, especially metals.. • The spacing between energy levels is so minute in metals that the levels essentially mer

Trang 1

Band Theory

• This is a quantum-mechanical treatment of bonding in

solids, especially metals

• The spacing between energy levels is so minute in metals

that the levels essentially merge into a band.

• When the band is occupied by valence electrons, it is

called a valence band.

• A partially filled or low lying empty band of energy levels,

which is required for electrical conductivity, is a

conduction band.

• Band theory provides a good explanation of metallic luster

and metallic colors

<Ref> 1 “The Electronic Structure and Chemistry of Solids” by P.A Cox

2 “Chemical Bonding in Solids” by J.K Burdett

Trang 2

Magnesium metal

Trang 5

Constructive Interference for bonding orbital

The electron density is given by

ρ(x) = Ψ*(x) Ψ(x) =|Ψ(x)| 2

Trang 7

k k

k

E

ψ ψ

Trang 8

8

Trang 9

9

Trang 11

Lewis StructureHetero-nuclear Diatomic Molecule

Trang 14

Band Overlap in Magnesium

Valence bandConduction band

Trang 16

16

Trang 19

The π-Molecular Orbitals of Benzene

π-M.O of benzene

Trang 21

21

Trang 23

Linear Conjugated Double Bonds

E

π-M.O

Bonding

bonding

Anti-One-dimensional chain with n π -orbitals, jth level

Ej = α + 2 β cosj π /(n+1) , j =1, 2, 3 …

Trang 24

24

Trang 25

Elementary Band Theory

Trang 26

If Ψ(x) is the wave function along the chain

Periodic boundary condition:

The wavefunction repeats after N lattice spacings

Trang 27

This can be achieved only if Ψ(x+ a) = µ Ψ(x) (4)

µ is a complex number µ* µ = 1 (5)

Through n number of lattice space Ψ(x+ na) = µn Ψ(x) (6)

Through N number of lattice space Ψ(x+ Na) = µN Ψ(x) (7)

Since Ψ(x+ Na) = Ψ(x), µN = 1 (8)

⇒ µ = exp(2πip/ N) = cos(2πp/ N) + i sin(2πp/ N) (9)

Where, i = √-1, and p is an integer or quantum number

Define another quantum number k (Wave number or Wave vector)

Trang 28

Ψ(x+ a) = µ Ψ(x) = exp(ika) Ψ(x) (12)

Free electron wave like Ψ(x)= exp(ikx) = cos(kx) + i sin(kx) (13)

can satisfy above requirement

A more general form of wave function

Bloch function Ψ(x) = exp(ikx) µ(x) (14)

and, µ(x+a) = µ(x) a periodic function, unaltered by

moving from one atom to anothere.g atomic orbitals

⇒The periodic arrangement of atoms forces the wave functions of

e- to satisfy the Bloch function equation

Trang 30

E

? = 8

? = 2a

Wave vector (Wave number) k = 2π/λ

1 Determining the wavelength of a crystal orbital

2 In a free electron theory, k α momentum of e- ? conductivity

3 -π/a = k = +π/ a often called the First Brillouin Zone

Anti-bonding between all nearby atoms

nodenode

Trang 31

χn (x) : atomic orbital of atom n

C n : coefficient C n = exp(ikx) = exp(ikna)

x ) exp( ) ( )

( χ Bloch sums of atomic orbitals

From eq (10), k = 2πp/(N a) for quantum number p of repeating

unit N

Consider a value k’, corresponding to a number of p + N

k’ = 2π(p + N)/(N a) = k + 2π/a

C n ’ = exp{i(k + 2π/a )na}= exp(ikna)? exp(i2πn) = C n

A range of 2π/a contains N allowed values of k

However, Since k can be negative, usually let -π/a = k = +π/ a

(15)

(16)

(17)

Trang 32

Bloch function Ψk = Σn e-ikna Xn

where X n atomic wavefunction

k value

Index of translation between 0 – π/a

or, 0 – 0.5 a* (a* = 2π/a)

1-D Periodic

X 0 X 1 X 2 X 3 X 4 X 5 X 6

a

Trang 34

k k

k

E

ψ ψ

*

)(

exp

ψ ψ

Trang 37

σ-bond

1st Brillouin zone

Trang 38

DOS(E)dE

= # of levels between E and E + dE

Trang 39

39

Trang 40

k = 0 → 0.5a*

Trang 41

a

π/aπ/2a

π/3a

λ2a

∞4a

6a

∞2a2a

Trang 42

center

r of orbital

C

C

jr r

n

r

r jr j

π π

ψ

π- bond

Trang 43

The evolution of the π energy levels of an infinite

one-dimensional chain (-CH-)n.

Trang 44

n k

b k ikna a A b B

1

) ( )

( )

n k

a k ikna b A a B

1

) ( )

( )

Trang 45

χ(A) = s- orbital, χ(B) = σ p- orbital

n k

n k

Ψ(0) = Σn e0 X n = X 0 + X 1 + X 2 + X 3 + X 4 + X 5 + X 6 + …

No effective overlap between orbitals ⇒ non-bonding

Effective overlap between orbitals ⇒ bonding

Ψ (π/a) = Σn e-inπ X n = X 0 - X 1 + X 2 - X 3 + X 4 - X 5 + X 6 - …

Trang 46

B bandE

Trang 47

χ(A) = s- orbital, χ(B) = σ p- orbital

n k

n k

Ψ(0) = Σn e0 X n = X 0 + X 1 + X 2 + X 3 + X 4 + X 5 + X 6 + …

Ψ (π/a) = Σn e-inπ X n = X 0 - X 1 + X 2 - X 3 + X 4 - X 5 + X 6 - …

Antibonding between neighbor orbitals

No effective overlap between orbitals ⇒ non-bonding

Trang 49

49

Trang 50

Nearly-free electron model

Trang 51

1st Brillouin zone

Energy gap is produced due to

periodic potential

Trang 52

52

Trang 53

Schematic showing the method of generating the band structure of the solid.

Trang 54

A comparison of the change in the energy levels and energy bands

associated with (a) the Jahn-Teller distortion of cyclobutadiene

and (b) the Peierls distortion of polyacetylene

Effect of Distortion

Trang 55

chain

Trang 56

56

Trang 57

σ bond

Ngày đăng: 05/05/2014, 13:56

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN