1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (846)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Không có thông tin
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022-2023
Thành phố Không có thông tin
Định dạng
Số trang 5
Dung lượng 119 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A 0 B 1 C π D −1[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 2 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD

A. V

V

V

V

2.

Câu 3 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A (7

4;+∞)

B (7

4; 2]S[22;+∞) C [7

4; 2]S[22;+∞) D [22;+∞)

Câu 4 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R

Câu 5 Cho hình lập phương ABCD.A

B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′

D′

A. a

3

a3

a3

a3

6.

Câu 6 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

A 3√3(m2) B. 3

√ 3

√ 3

2) D 1 (m2)

Câu 7 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√

ba3

A. m

m2− 3

m2− 12

4m2− 3

Câu 8 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= x4+ 1 B y= x4+ 2x2+ 1 C y= −x4+ 2x2+ 1 D y = −x4+ 1

Câu 9 Cho hàm số y = f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt

A m > −4 B −4 < m < −3 C −4 ≤ m < −3 D −4 < m ≤ −3.

Câu 10 Cho hàm số có bảng biến thiên:

Khẳng định nào sau đây là đúng?

A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại

C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại

Câu 11 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

A A3

Câu 12 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng

Câu 13 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.

Câu 14 Thể tích khối lập phương có cạnh 3a là:

Trang 2

Câu 15. 6x5dxbằng

6x

6+ C D 30x4+ C

Câu 16 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính

xác suất sao cho có ít nhất một quả màu trắng

A. 1

8

209

1

210.

Câu 17 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

A 60

Câu 18 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2

0 f(2x)dx bằng

Câu 19 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′

(x) bằng

A. 5

4

Câu 20 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 21 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 22 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (−1; −2; −3) B (1; 2; −3) C (−1; 2; 3) D (1; −2; 3).

Câu 23 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

Câu 24 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 25 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

2

√ 3

√ 3

Câu 26 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

A. 11

1

Câu 27 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Câu 28 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n3 = (1; 1; 1) B.→−n4 = (1; 1; −1) C.→−n2 = (1; −1; 1) D.→−n1 = (−1; 1; 1)

Câu 29 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A Q(1; 2; −3) B P(1; 2; 3) C N(2; 1; 2) D M(2; −1; −2).

Câu 30 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Trang 3

Câu 31 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên.

Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?

Câu 32 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 33 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1

2 Giá trị của u3bằng

A. 1

1

7

2.

Câu 34 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i

trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′

A S = 25

2 .

Câu 35 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một đường thẳng B Một Elip C Một đường tròn D Một Parabol.

Câu 36 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 37 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z

w là

số thuần ảo thì mệnh đề nào sau đây đúng?

A Tam giác OAB là tam giác cân B Tam giác OAB là tam giác nhọn.

C Tam giác OAB là tam giác đều D Tam giác OAB là tam giác vuông.

Câu 38 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|

A max |z|= 4 B max |z|= 3 C max |z|= 7 D max |z|= 6

Câu 39 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là

Câu 40 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 41 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện

w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5

A (x − 1)2+ (y − 4)2 = 125 B x= 2

C (x+ 1)2+ (y − 2)2 = 125 D (x − 5)2+ (y − 4)2= 125

Câu 42 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là

C w= 1 + √27i hoặcw= 1 − √27i D w= −√27 − i hoặcw= −√27+ i

Câu 43 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

128.

Câu 44 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Trang 4

Câu 45 Cho hình lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′

Câu 46 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 2mn+ 2n + 3

C log22250= 2mn+ n + 3

Câu 47 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây

Câu 48 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −x4+ 2x2+ 8 B y= −2x4+ 4x2 C y= x3− 3x2

D y= −x4+ 2x2

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi

qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)

A.

x= −1 + 2t

y= 2 + 3t

z= −4 − 5t

x= 1 + 2t

y= −2 − 3t

z= 4 − 5t

x= 1 + 2t

y= −2 + 3t

z= 4 − 5t

x= 1 − 2t

y= −2 + 3t

z= 4 + 5t

Câu 50 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 33π

31π

32π

5 .

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:26

🧩 Sản phẩm bạn có thể quan tâm